
= _ | | II I IiII f

~DTIC

(fI

9%ELECTEM

DEC 15I

OF ~ %JB U

BOOLEAN APPROACHES
IN DIGITAL DIAGNOSIS

THESIS

Reginald Harold Gilyard
Captain, USAF

AFIT/GCS/ENG/89D-4

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

W - I I r 8 I i. , - i89 12115

A FIT/GCS/ENG/89D-4

BOOLEAN APPROACHES
IN DIGITAL DIAGNOSIS

THESIS

Reginald Harold Gilyard
Captain, USAF

AFIT/GCS/ENG/89D-4 D TIC
SELECTE 0

S DEC 15 1989

B

Approved for public release; distribution unlimited

AFIT/GCS/ENG/89D-4

BOOLEAN APPROACHES

IN DIGITAL DIAGNOSIS

THESIS

Presented to the Faculty of the School of Engineering

ot the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Systems)

Reginald Harold Gilyard, R S.

Captain, USAF

December, 1989

Approved for public release; distribution unlimited

Acknowledgments

I would like to thank Doctor Frank Brown for the help that he provided as my

advisor. I would also like to thank Lieutenant Colonel Charles Bisbee and Captain Bruce

George for reviewing this thesis. Lastly, I would like to thank Captain James Kainec for

all of the help that he provided.

Reginald Hiarold Gilyard

Acceseion For

DN. r! .n/&

DTm TABm m

AvcZ2I, V Cd3

7'e la.

Table of Contents

Page

A cknow ledgm ents . ii

Table of Contents ii

List of Figures viii

List of Tables x

Abstract xi

I. Introduction 1-1

Background 1-1

Test Vector Generation 1-1

Interpretation of Results 1-3

Problem 1-4

Cierny's Vector Generation Procedure 1-1

Kainec's Diagnostic System 1-4

Assumptions 1-5

Scope 1-5

Methodology 1-5

I. Summary Of Current Knowledge 2-1

Boolean Reasoning Approaches 2-1

Boolean Difference 2-1

Literal Propositions 2-4

Cerny's Method 2-8

Kainec's Method 2-9

iii

Page

Sequential Circuit Diagnosis 2-10

Conversion Method 2-10

State Table Verification 2-11

Summary 2-11

III. Mathematical Development of Cerny-based Diagnostic Algorithm . . . 3-1

Single Fault Diagnosis 3 1

Test Vector Generation :1-2

Running an Input/Output Experiment 3-8

Analysis of Input/Output E::periment Results 3-8

Bridge Faults 3-13

Test Vector Generation 3-13

Multiple Stuck-at Faults 3-17

Test Vector Generation 3-17

Sequential Circuit Diagnosis 3-20

Modelling Sequential Circuits as Combinational Circuits.. 3-20

Vector Generation 3-21

Input/Output Experiment and Analysis of Results 3-30

Another Approach to Vector Generation 3-30

IV". Mathematical Development of Extension to Kainec's Diagnostic System -1-1

Stuck-at Fault Diagnosis 4-1

Checkpoint Fault Model -1

Derivation of Characteristic Equation1-2

Generation of Vectors1-6

Incorporation of Input/Output Experiment Results 4-7

Interpretation of Results -1-8

Extensions for Multiple Output Circuit Diagnosis 4-9

iv

Page

Single Output Generation 4-9

Multiple Output Generation 4-11

V. Implementation of Cerny-based Diagnostic System....

Software System Architecture 5-1

Input Function- 1

Vector Generation Function...

Analysis.... i

Results..... 1

Results for Combinational Routines 5-115

Results for Sequential Circuits 5-15

I.Implementation of Extensions to Kainec Diagnostic System. 6-1

Original Architecture. 6-1

Input Module 6-i

Equation Generation Module 6-1

Tester Module. 6-3

Interpretation Module. 6-3

Changes for Multiple Outputs. 6-3

Tester Module Changes 6-4

Interpretation Module Changes. 6-5

Results 6-6

Accuracy. 7

Speed 6-7

VII1. Conclusions and Recommendations 7-1

Summary 7-1

Summary of Extensions to Cerny Research 7-1

Summary of Extension to Kainec Research 7-3

V

Page

Assessment of Research . _

Recommendations . -5

General Improvements 7-

Specific Improvements 7-6

Apperdix A. Fundamentals of Bloolean Algebra I

Definitions A_-I

Axioms A-2

The Inclusion Relation A-3

Theorems A-3

Properties.-

Literals, Terms, and Formulas A-5

Functions A-6

Boolean Ex<pansion Theorem. A-8

Extended Verification Theorem. A-8

Canonical Forms A-s

Minterm Canonical Form. A-8

Maxterm Canonical Form A-9

Blake Canonical Form A-11

Reduction. A- 12

Eliminants A- 15

The Conjunctive Eliminant A- 15

The Disjunctive Eliminant. A-16

Elimination. A-16

Solutions of Boolean Equations A-17

Comparison of Functions. A-I8

Appendix B. Cerny-based Diagnostic System Code. B-1

Page

Appendix C. Modified Kainec Diagnostic Sy'stem Code C-1

Vit a. VITA- I

Bibliography BIB-i

vii

List of FigurF8

Figure Page

2.1. Example Circuit 2-3

2.2. Example Circuit. 2-6

2.3. Example Sequential Circuit 2-12

3. 1. Example Circuit for Combinatonal Single SA Fault Diagnosis 3-2

.3.2. Example Circuit for Combinational Bridge Fault Diagnosis 3-14

3.3. Example Circuit for Combinational Multiple SA Fault Diagnosis 3-17

3.4. Model of a Sequential Circuit 3-21

3.5. Flattened Sequential Circuit Model 3-22

3.6. Pseudo JK Flip-flop 3-22

3.7. Example Sequential Circuit 3-23

3.,. Flattened Example Circuit :-24

41.1. Checkpoint Placement. 4-2

1.2 Checkpoint Model- 3

1.3. Example Circuit. 1-4

!'. 1. Diagnostic System Menu. 5-2

5.2. Architecture of Diagnostic Routines. 5-3

5.3. Example Circuit 5-4

.5.4. Example Single Stuck-at Fault Test 5-6

5.5. Example Bridge Fault Test. 5-8

.5.6. Example Multiple Stuck-at Fault Test. 5-9

5.7. Example Sequential Circuit 5-10

5.8. Example Sequential Circuit Single SA Fault Test 5-12

5.9. Example Sequential Circuit Single SA Fault Test, cont.- 13

viii

Figure Page

6.1. Original Kainec Diagnostic System Architecture 6-2

6.2. Example Multiple Output Circuit (.-4

6.3. Vector Application Prompt to User 6-5

1;.1. Report of Results to User 6-6

i X

List of Fable.s

TFable Page

\.1. Truth Table for Example A.1 -7

A.2. Shorthand Notation for MintermsA-9

A.3. Shorthand Notation for Maxterms A-10

A. 1. Results of Exam ple A.9 .A.I....

x

AFIT/GCS/ENG/89D-4

Abstract

The goal of this thesis is to review and improve two existing methods that use I3oGean

reasoning as a basis for testing digital circuits. Extensions are made to research done by

both Cerny and Kainec in this area.

The method developed by Cerny to generate test vectors capable of detecting single

stutck-at, bridge and multiple stuck-at faults is reviewed and then extended in two ways.

The first extension incorporates the capability to automatically analyze the results gained

from applying a given vector. The second extension allows the diagnosis of sequential

circuits. Since Cerny's original method was not automated the entire process is updated

to include the extensions and then programmed.

ixainec developed an automated diagnostic system to test for multiple faults in com-

binational circuits. The original system is restricted to diagnosing faults in circuits with

ore output. An extension is designed and programmed to incorporate the capability to

diagnose multiple output circuits. The extension shows that multiple output circuits offer

tlh added advantage of being able to choose an optimal test vector from a set of genrated

vectors, thereby shortening the required testing time for a given circuit.

The software routines are programmed in PC-Scheme (a dialect of LISP) on an IBM

microcomputer. Due to a conversion program written by Kainec the software can also be

run on a Sun-4 workstation in the T environment. T is derived from Scheme. . -

xi

BOOLEAN APPROACHES

IN DIGITAL DIAGNOSIS

I. Introduction

Background

Digital integrated circuit diagnosis involves three main activities: test vector gener-

ation, vector application and interpretation of the results obtained from application. The

use of Boolean manipulation of circuit descriptions to accomplish the generation and inter-

pretation steps enables the automation of these activities. The basic Boolean operations

and formulas referenced and used throughout this paper can be found in Appendix A

(18:187-204).

Test Vector Generation. Test vector generation, from a diagnostic viewpoint, is

the process of generating a sequence of vectors capable of detecting a fault or faults in a

circuit. Each vector comprises logic values which typically represent voltage values to be

applied to the primary inputs of a circuit.

Reghbati decomposes the test vector generation process into three separate activities:

selecting a model of the system to be tested, (the system is an integrated circuit in our

case), developing a model for the type of fault being diagnosed, and finally generating tests

to detect that particular fault (26:9).

In the first activity there are three different levels at which a circuit can be modelled.

The first, the functional level, models the circuit as a collection of large functional parts:

multiplexers, adders, counters, etc. (26:15). The second level is the logic-gate level, of

which the functional-level components are composed. At this level a circuit is modelled

as a network of inverters, NAND gates, NOR gates, flip-flops, etc. The last level is the

transistor level. Transistors are the basic building blocks of logic gates. At this level a

circuit is modelled as a network of switches, interacting to perform the circuit's logical

1-1

.-- , mmlml mm m ulmmmmm ~ m
=MmOm"

function. Very Large Scale Integration (VLSI) circuit designers typically lay out circuits

at the transistor level to minimize area and maximize speed of operation.

As a test designer descends from the functional level to the transistor level of rep-

resentation, the number of components rapidly increases. As the number of components

increases, so does the complexity of representation and hence the computational complexity

of vector generation.

Several authors recognize the need to attempt vector generation at the transistor

level because of the widespread use of VLSI technology (27, 2, 10, 15. 9). Boolean ap-

proaches use the logic-gate level of representation because it is a form that can be directly

manipulated by Boolean operations. In fact, most traditional diagnostic approaches use

the gate level and find the transistor level a difficult level at ;,iich t,, work. Se.veral present-

day methods that test circuits at the transistor level first seek to convert transistors to

gate-level components prior to attempting vector generation (1, 9, 15).

Within each level of representation a circuit can be described as combinational or

sequential. Combinational circuit vector generation is commonplace. Sequential circuits

include feedback paths (12), and have proven to be a difficult problem for diagnostic system

developers from the standpoint of practical circuit representation, fault modelling and final

algorithm development.

Reghbati's second test vector generation activity, fault modelling, looks to find a

representation for the type of fault that one is seeking to detect. The two generic categories

of logic faults are classical and non-classical faults. Classical faults come in two forms: a

circuit line stuck-at-1 or a line stuck-at-0. A line stuck-at-t (0) indicates that the line

in question is permanently held at at a logic 1 (0) value, (corresponding to high and low

voltages), as opposed to changing with normal circuit operation. Faults in integrated

circuits have been traditionally modelled as stuck-at faults. More recently several authors

have suggested that stuck-at fault models are inadequate in diagnosing faults in VLSI

circuits (2, 9, 8, 15), which tend to be primarily non-classical in nature. Non-classical

faults in VLSI circuits include transistor devices stuck-open and stuck-closed (shorted

transistors) (2:17).

1-2

When modelling faults a test designer must also be concerned with the number of

faults that the fault model will represent. Many tests use models that detect single faults:

however a circuit may have several failures occur at once. If this is a concern, then the

model should also be able to support multiple-fault diagnosis.

Reghbati's third vector generation activity is the actual generation of test vectors

using some mathematical process as a basis. In this activity an algorithm is designed and

implemented to generate test vectors. In general a given algorithm seeks to combine the

circuit description and fault model (Reghbati's first and second activities) to arrive at the

primary input values that will enable detection of a fault by observing the circuit's primary

outputs.

Generation can be either adaptive or non-adaptive. Adaptive vector generation pro-

cedures typically generate a vector and then apply it before generating the next vector.

This is done so that the results gained from application of the previous vector can be used

to generate the next test vector. Non-adaptive systems generate and store all vectors prior

to any test application.

Several known algorithms also allow specification of the particular line suspected

to be at fault to support generation of a test designed to diagnose the suspected line

(7, 19:28-47).

Interpretation of Results. After the vector is generated, by whatever means, the

next step is to apply the vector by manual or automated means. Whether manual or

automated, application requires no real algorithmic development and is not the primary

focus of this thesis. The results of application, however, can be manipulated to yield

information about the state of the circuit. As noted previously this information can also

be used to generate successive test vectors.

Kainec has developed a means of combining the result of application with the vector

applied to achieve a logical association between the two (18:80-82). This association is then

used to gain information about internal circuit parameters which represent the checkpoints

of the circuit. The original circuit description is used in conjunction with the information

about these parameters to identify the presense or absence of a fault.

1-3

Problem

This rsearch develops extensions to two existing digital circuit diagnostic approaches

which use the Boolean manipulation of circuits described at the logic-gate level. The effoit

primarily focuses on the use of Boolean reasoning techniques to achieve the enhancements.

Cerny's Vector Generation Procedure. The first approach that is extended

was originally developed by Cerny (7) to generate test vectors for digital circuits repre-

sented at the gate level. Cerny's algorithm generates vectors capable of detecting single

stuck-at faults, multiple stuck-at faults, and bridge faults, (two lines shorted together), for

a specified line or lines in the circuit. The procedure was developed for use on combina-

tional circuits, but has been successful in producing vectors capable of diagnosing faults in

combinational circuits with feedback loops. Cerny suggests that this result po;nts to the

possibility of supporting squential circuit diagnosis (7:26).

It should be noted that this procedure assumes that the fault, or combination of

faults, specified is the only possible faulty condition in the circuit at that time. For

example, if lines x, and z 2 of a circuit are suspected to be bridged, then they are tested

under the assumption that all other lines are fault free.

The algorithm is not automated and has no capability to analyze the results of vector

application. To make the procedure a true diagnostic system, it is extended in this thesis to

incorporate an analysis capability. The second extension develops a system for diagnosing

faults in sequential circuits using the product of the first extension as a starting point.

Finally, the entire system is automated to enable practical use on circuits.

Kainec's Diagnostic System. One extension is made to the automated diagnostic

system developed by Kainec (18) for diagnosing multiple stuck-at faults in combinational

circuits. Kainec's system accepts gate-level circuit descriptions and analyzes the circuit

following several iterations of vector generation and application. The number of iterations

is directly related to the size and complexity of the circuit. The adaptive nature of the

program minimizes the number of vectors required for testing. Kainec's test procedure

is more comprehensive than Cerny's in that it tests a circuit as a whole withno specific

1-4

fault assumption that excludes all other possibilities. However, this makes Kainec's routine

more comp::tationally intensive than Cerny's.

Currently Kainec's system is limited to diagnosing circuits with one output. The

extension described in this thesis enables the diagnosis of multiple output circuits.

Assumptions

Sequential testing with the methods described in this thesis requires physical access

to the outputs of memory elements in the circuit. The capability to access these nodes is

assumed. The method also assumes that each circuit under test can be reset at any time

during the test process.

Scope

The scope of the extensions in this thesis is limited to diagnosing small and medium

scale integrated circuits. In the cse of both diagnostic processes the computational com-

plexity increases exponentially with the number of primary input variables, making the

diagnosis of large scale integrated circuits impractical. Only classical faults are addressed.

Methodology

The approach taken in this research follows the standard development steps in any

software engineering endeavor: design, code and test (23:214).

The design of each extension begins with a review of the Boolean manipulation in

the original works. A mathematical procedure for each of the extensions is then developed

and incorporated into the original developments by Cerny and Kainec.

The coding process changes the manual boolean manipulation procedures into soft-

ware. A functional decomposition of the steps in the manipulation process maps these

steps into separate software subroutines. Two major software programs are developed, one

to test digital circuits using the Cerny approach and one using the Kainec method. Coding

is done in the Scheme programming language (a dialect of LISP) to take advantage of its

symbol processing capabilities.

1-5

The testing process is conducted on several simulated circuits to determine correct

operation of the program on good and faulty circuits. Accuracy of diagnosis and time to

completion serve as the overall metrics for success.

1-6

II. Summary of Current Knowledge

This chapter surveys two areas of research that support accomplishment of the thesis

effort introduced in Chapter one. The first section discusses several of the works that

pertain to the use of Boolean reasoning in circuit diagnosis. Review of these efforts provides

an overall view of the primary research area that clearly must be well understood before

attacking the problem of enhancing this area. Secondly, research in the area of sequential

circuit diagnosis is reviewed to provide some insight into how this traditionally difficult

problem might be approached.

Boolean Reasoning Approaches

Four Boolean-based methods relating to circuit diagnosis are introduced: Boolean

difference, literal propositions, Cerny's method and Kainec's method. More detail is pre-

sented in this chapter on the first two methods than on the last two. Extensive detail on

the Cerny and Kainec methods is provided in Chapters three and four for continuity of

discussion when developing the mathematical basis for this thesis.

Boolean Difference Both Lala and Fujiwara discuss the method of calculating a

Boolean difference in diagnosing digital circuits (12, 19:28-34). It is only a vector generation

method and therefore only forms part of a complete diagnostic system.

In defining the Boolean difference a suspected faulty line is specified. A function is

constructed using two versions of the circuit description: the circuit function in its original

form, and also in a form that has the variable labeling the suspect line complemented.

The term difference comes from the exclusive-or operator used to relate the two functions.

The exclusive-or operator returns a zero if the logic values of two operands are the same

and a one if they are different. The following equation defines the Boolean difference with

respect to a specified suspected faulty line labeled xi (19:28):

dF(j)dF i = F(xl,..., xi,...,x,,)(F(xl,.... x, _ x,,). (2.1)

2-1

For the diagnosis of internal variables the functions on the right-hand-side of this

equation are described in terms of the internal variable. In other words the terms or

alterms that feed the internal variable are replaced by the internal variable in the above

equation. For example, if y, is an internal variable equal to x 2 + X3 then the Boolean

difference used to diagnose stuck-at faults on this node is given by

dF(j)_
dy = F(x x....y ,...,,) , F(z , x,) (2.2)

where Yi replaces the alterm X2 + X3 in the functions above.

Vectors capable of detecting a stuck-at fault are generated by first setting the calcu-

lated Boolean difference equal to one. To complete the input vector the suspected node

(or logic supporting it if an internal node) is ANDed with the resultant Boolean difference.

If testing for a stuck-at-one condition the complement of the suspected variable is used. If

testing the stuck-at-zero case then the uncomplemented version is used.

Figure 2.1 shows an example circuit. To test a stuck-at-zero condition on line a we

first calculate the Boolean difference which is

d (AB + C) D (A'B , C). (2.3)
d(A)

Reducing- thi equation yields

dF
- = BC'. (2.4)
d(A)

The vector capable of detecting the stuck-at-zero fault is attained by solving the following

equation:

ABC= 1. (2.5)

2-2

A

B

z
C

Figure 2.1. Example Circuit

2-3

Solution of this equation results in the test vector

A4 = 1

B =

C = 0.

Literal Propositions Johnson details an approach that generates test vectors by

describing a given circuit in terms of propositions (16:489-491). A proposition is a decla-

ration that must be true or false with no other alternatives. Therefore two propo:itions

are generated for each line in the circuit. The propositions for each line are the comple-

mented and uncomplemented forms of the variable that labels the line. The propositions

incorporate fault modelling information by including the possible conditions for each line

(normal, stuck-at zero or stuck-at one). As an example the following equations describe

the two propositions for a line labeled a (16:490).

P = Aa, + a, (2.6)

and

P= A'a, + ao, (2.7)

where P is the proposition that a equals one and P is the proposition that a is zero. A

is the input to line a, a, means a is normal, a, means a is stuck-at one and ao means a is

stuck-at zero. Using these conventions equation (2.6) states that a will be equal to one if

either A is one and the line is normal, or the line is stuck-at one. Equation (2.7) defines

the proposition that a is not equal to one.

Johnson goes on to describe how lines are combined using the gates of a circuit,

resulting in a combination of propositions (16:489). The following system of equations

describes an AND gate with input lines a and b and output line c.

2-4

P, = .4a ,+a1 (2.S)

Pta= A'a, + a,

Pb = Bb, + bt

P6= B'b,, + bo

P = PPbC, + cl
.Pc= (P" + P6)c, + Co.

Continuing along these lines a collection of the gates in a circuit can be combined to

form a system of equations that ultimately includes the circuit's output line. This group

of propositions, which describes the entire circuit, is then used by Johnson to generate two

other equation systems: one for a fault-free circuit, and one for a faulty circuit which is

based on a user-specified fault. Figure 2.2 as an example circuit. Below are the systems

of equations associated with the circuit, with node a suspected to be stuck-at one. The

following are all of the line propositions:

P = Aa, + a, (2.9)

P", = A'a, + a,

Pb = Bb, + b,

P = B'b, + bo

PC = Cc, + C,
P" = C'c, + Co

Pd = PPbd,i + d,

t*4 = (P. + Pb)d. +do

P, = (Pd + P,)e, + eI

P' = (PIP)e, + eo.

The fault-free circuit propositions are found by first setting all variables with sub-

script n equal to one. Next all variables with subscripts 0 and I are set equal to zero.

Finally, the equations describing gates are changed by substituting the propositions found

one their right-hand-sides with the line propositions that make up the gate. The fault-free

2-5

Ad

______________ z

Figure 2.2. Example Circuit

2-6

propositions corresponding to the system ot equations above are

P, .4 (2.10)

P6 -B

P =- B'

pC = CI
P, C

PIC/

Pit =.4 B
f = .4 + B'

P = AB + C

P"= (A' + B')C'.

The a stuck-at-one propositions are found by setting .A equal to one in the above

equations resulting in

P = 1 (2.11)

P = 0

Pb = B

Pb= B'
PC = C
P = C'

Pd = B

Pd = B+C
P, B'C'.

Test vectors are generated based on a proposition concerning the output variable.

Specifically, the output value in the fault-free circuit is the opposite of the output value

in the faulty circuit. Mathematically Johnson states this proposition w;*h the following

equation (16:491).

2-7

Pe(n)P,(f) + P,(n)Pe(f) = 1. (2.12)

where e is the output of the circuit, (n) associates Z with a normal (fault-free) circuit and

f) relates to a faulty circuit.

Using the fault-free and faulty propositions for the example circuit of Figure 2.1

equation (2.12) becomes

(AB + C)(B'C') + (4' + B')(C')(B + C) 1. (2.13)

After simplification the resulting equation is

.4'BC' = 1. (2.14)

This equation yields the input vector

.4 - 0

B = I
C =0.

(2.15)

Inspection of this vector shows that setting A equal to zero properly excites the

uspected line while the other variable settings sensitize a path from the suspected fault

to the output.

Cerny's Method. Cerny's method for test vector generation begins with two struc-

tural descriptions of a given circuit (7:13). The first is a system of equations that describes

the interconnection of gates in the circuit, where each gate has a Boolean equation that

rolates the inputs and outputs of the gate. The second description is an overall single

Boolean equation that relates the primary inputs to the output of the circuit. If the circuit

contains several outputs then there is an overall equation for each output.

2.8

The first structural description is modified by interjecting information about the

suspected location of a fault (or faults) in the circuit (7:14). The user specifies a variable

that identifies the suspected faulty line in the circuit. fie variable is isolated in the circuit

by replacing it (or the logic that feeds it if an internal variable) with a "test" variable.

The modified first structural description is collapsed into one equation and then com-

bined with the second structural description using Boolean reasoning techniques. After this

combination of circuit structure and fault model information is manipulated test variable

remains. The test variable is then substituted by one or zero to generated a stuck-at one

or stuck-at zero vector, respectively.

Kainec's Method. Kainec's method (18) begins with a system of equations that

represents the structure of a circuit, much like the literal proposition and Cerny methods.

The approach differs from the others in several ways. The method is a complete diagnostic

system that uses the results of vector application to detect and isolate stuck-at faults.

It is also an adaptive system, using the results of each succesive vector application to

generate the next vector. In addition to these differences the Kainec method does not

require specification of fault variables. It tests for all possible stuck-at faults in a circuit

automatically.

The system of equations that Kainec starts with is modified by inserting stuck-at

fault model information. The stuck-at fault model (discussed in Chapter four) specifies

normal and faulty conditions for each critical line in the system by substituting a fault

model equation for each of these lines. Certain lines, formally known as checkpoints, are

critical in the sense that they must be considered for fault modelling to insure maximum

fault coverage for the circuit. A checkpoint is defined as a fanout branch of a node that

fans out or a primary input node that does not fan out. The fault model also specifies

constraints on the checkpoints that are included when altering the structural description.

Once modified, the system of equations is collapsed into one equation that Kainec

calls the "'characteristic equation" (18:69-73). The characteristic equation includes all

structural and fault model information for the circuit. It is this equation that is ma-

nipulated to produce a test vector. When all possible information has been gained from

2-9

application of test vectors the states of the checkpoints can be deduced to detect and iso-

late faults that may be present. Kainec's method also uses the information gained from

acompleted testing session to derive the actual function of the circuit.

Sequential Circuit Diagnosis

Very few research efforts have been accomplished in the area of sequential circuit

diagnosis. Even less has been done using Boolean reasoning to diagnose sequential circuit

faults. Two common techniques for general diagnosis exist. The first involves the conver-

sion of a sequential circuit to a combinational one (19:49-50)(12:67-7,1). The second seeks

to verify the state table that describes a given sequential circuit (19:50-66).

Conversion Method. The conversion of a sequential circuit into a combinational

one is detailed in Chapter three to maintain continuity in the description of the approach

taken in this thesis to diagnose faults in sequential circuits.

In general the process begins by visualizing a sequential circuit as a combination of

combinational logic and sequential elements (typically flip-flops) (19:50). The two parts are

recognizably distinct and are often referred to as a combinational block and a sequential

block. Some or all of the outputs of the combinational block feed the inputs of the sequential

block. The outputs of the sequential block then feed back as inputs to the combinational

block.

To do the conversion the sequential elements are "flattened". Flattening treats the

outputs of the sequential block as primary circuit outputs, and the feedback inputs are

replaced on the combinational block by the intial state of the sequential circuit. The

elimination of the feedback path creates a iterative combinational circuit. The flattened

sequentidl elements are referred to by Fujiwara as "pseido" flip-flops (12:70).

Once the conversion is made the typical approach is to use a slightly modified version

of the D-algorithm to diagnose faults in the modified circuit. However, it would seem that

any algorithm capable of testing a combinational circuit could be used.

2-10

State Table Verification. Lala outlines a method of testing sequential circuits by

verifying the state table associated with a given circuit (19:50-66). A state table identifies

the possible transitions (and associate outputs) from state to state in the circuit based on

the present state and input applied. Figure 2.3 shows an example circuit with its state

diagram and state table (21:218-220).

By applying an input and examining the state and outputs of the circuit a comparisnn

can be made with the state table. To completely test the circuit all rows of the state table

must be verified, assuming that the machine can be placed in all possible states of the

table.

Summary

Boolean reasoning methods for circuit diagnos- rfJer a logical means of incorporating

a representation of a suspected fault, or l4ass of faults, within the structural description of

a given circuit. Most methods are designed to process circuits described at the gate level.

Typically only stuck-at faults are diagnosed.

S-quential circuit diagnosis has always proven to be a difficult area in fault diagnosis.

The most common approaches to solving the problem seek to transform the sequential

circuit into a combinational circuit.

2-11

q2K v

q21 q2

q1i' q2?

X1, q2

q1

Sequential Circuit

Next State/
Output

Present
1/0 00 11 Statex =Ox = 1

010qlq2 qlq2/zl qlq2/zl

101000 00/0 01/0
0/ 1 0001 11/0 01/0

10 10/0 00/1

1/0 11 10/0 11/0

STATE DIAGRAM STATE TA.BLE

Figure 2.3. Example Sequential Circuit

2-12

III. Mathematical Development of Cerny-based Diagnostic Algorithm

This chapter details the mathematical development that is used to diagnose stuck-at

faults in combinational and sequential circuits using the work of E. Corny as a basis (7).

This development is primarily extracted from Cerny's examples (7:13-22) which end with

the generation of test vectors capable of detecting single stuck-at faults, bridging faults

and multiple stuck-at faults.

Two extensions are made to the original Cerny approach. The first incorporates

the c;nability to analyze the results of an inpit/outpit experiment thuz creating a true

diagnostic system. An input/output experiment involves applying a generated vector and

reading the circuit outputs. The second extension enables the diagnosis of sequential

circuits.

The derivations are divided into four sections. The first section discusses single stuck-

at fault diagnosis by reviewing Cerny's method for vector generation and then developing

the extension for analyzing test results. The next two sections discuss Cerny's methods for

generating vectors to detect bridge faults and multiple stuck-at faults. The extension for

analyzing test results is not repeated in these two sections because it is the same regardless

of the type of fault being diagnosed. In the fourth section sequential circuit diagnosis is

addressed.

The last section in this chapter describes a another approach to test vector generation

that yields the same test vectors as the Cerny method when there is only one circuit output.

It is easier to process on paper but appears to require the same number of computational

steps required with Cerny's approach. For some multiple output circuits it generates less

possibilities for test vectors than the Cerny method.

The procedures described in this chapter (except for the last section) have been

automated, and the implementation of the software system is described in Chapter five.

Single Fault Diagnosis

This section discusses the mathematical development of the single-fault diagnostic

routine for combinational circuits. A running example will be used based on the circuit

3-1

cut

yl

x2 y2 z2

Figure 3.1. Example Circuit for Combinational Single SA Fault Diagnosis

in Figure 3.1 to give a specific look at how the general equations (general in that they

describe the procedure for any abitrary combinational circuit) are derived.

Test Vector Generation. The derivation of Cerny's procedure for generating test

vectors begins by forming an overall circuit characteristic function (CCF) (7:13-15) from

a system of equations describing the circuit. However, what he actually ends up with is

an equation that is the CCF set equal to one. We will call this equation an overall circuit

characteristic equation (CCE) and talk primarily in terms of equations throughout the

discussion. The overall CCE is a structural description of the circuit at the gate level.

The overall CCE is formed by combining the individual CCEs in the circuit. An

individual CCE is an equation that identifies the inputs and output of each logic gate in

the circuit. Referencing Figure 3.1, the running example for combinational single fault

diagnosis, the individual CCEs are

3-2

Yi = (3.1)
Y2 = x2

zI = Y1 + X2

z2 = Y1 + Y2.

Node yi is the suspected fault node. Cutting line yj yiplds

Y2 = (3.2)
zi = TEST'+ x2

Z2 = TEST'+ Y'.

By equation (A.31) these equations can be represented in the form that sets a function

of the inputs and outputs equal to one, using the exclusive-nor operation, producing

Y2 = 1 (3.3)

ziO (TEST'+') = 1

z 2 D (TEST'+y) = 1.

These equations are combined using equations (A.52) and (A.53) to form the single equa-

tion

[y2 G x'] . [z1 0 (TEST' + x)] .[z 2 0 (TEST'+ y')] = 1. (3.4)

Simplifying this equation results in

X2 z ' z2 TEST + X2y2'zIz 2TEST' + x'2y 2 zlz 2TEST' + x'yg2 zz'TEST = 1. (3.5)

3-3

The result is an equation that includes the primary inputs, internal variables, test

variable and outputs of the circuit. To get the overall CCE we need to determine a

relationship between the inputs, test variable and output. Therefore tile internal variables

(y) can be eliminated, using the disjunctive eliminant defined in equation (A.60), yielding

the following overall CCE for the example circuit:

x 2Z'z 2TEST + x 2 ztz 2TEST' + xzzZ 2TEST' + x~ziz1 TEST = 1. (3.6)

In general the overall CCE is

OCf(1_, TEST z) = 1. (3.7)

where x is the vector of primary inputs (minus those that are deleted when the fault node

is cut), TEST is the test variable and z are the outputs.

Having developed the overall CCE for a given circuit, the next step is to form a

description of the circuit that relates the inputs to the outputs with no manipulation to

account for a suspected faulty node (as opposed to the overall CCZ which is altered to

isolate the node). This description is called the fault-free circuit equation (FCE). The FCE

is formed by combining the individual output equations. The individual output equations

are the equations that individually relate each output to the primary inputs that feed it.

Using the present example the individual output equations are as follows:

Z1 = X I + X2, (3.8)

Z2 = x1 + X2. (3.9)

Using equations (A.31), (A.52) and (A.53) equations (3.8) and (3.9 can be combined to

get

[zI 0 X1 + X] [z2 0 X + X21 = 1. (3.10)

3-4

Simplification yields the following FCE for the example circuit:

X1X 2 z1z 2 + XIzz2z 2 + XIzIz2 = L. (3.11)

The general form of the FCE is

tf, (1_z) = 1, (3.12)

where ¢'r1 is the fault-free circuit function. The fault-free circuit function is a function

that relates the primary inputs of the circuit to the circuit's outputs.

Cerny's next step in the process of generating test vectors is to create an output char-

acteristic equation (OCE) (7:15). The OCE is an equation that describes the relationship

between tle test variable and the primary inputs of a normally operating ciruit. It is devel-

oped by combining the overall CCE (0,,f(.,TEST, z) = 1) and the FCE (iP1 /(O_,z) = 1),

and then disjunctively eliminating the output variables.

Using the example the result of combining CCE and FCE is

[x2 zJz 2TEST + x2zz 2TEST' + x2zIz 2TEST' + x'zl z'TEST]. (3.13)

[xlX 2z'Z 2 + X'z'z2z2 + X zzZ] = 1.

Simplifying and disjunctively eliminating the output variables yields the following OCE

for the example circuit:

z'TEST + x TEST' = 1. (3.14)

The general form of the OCE is

O0 (z,TEST) = 1. (3.15)

As previously noted the OCE describes the relationship between the test variable (and

hence the fault node) and the primary inputs under normal circuit operation. Therefore

3-5

Cerny's next step is to derive a realtionship that is contrary to normal circuit operation.

By complementing the OCF and setting it equal to one a relationship contrary to normal

circuit operation results. Using the example the resulting equation is

X'TEST'+ xITEST= 1. (3.16)

The general form of this result is

O/c/(x_,TEST)= 1. (3.17)

The process of vector generation continues by substituting the test variable with the

appropriate value (zero for a stuck-at-zero test, one for stuck-at-one) in equation (3.17),

and solving the resulting equation for _ (7:16-17). Continuing the example the following

equations yield test vectors capable of detecting stuck-at zero and stuck-at one faults,

respectively:

' = 1, (stuck - at - zero test) (3.18)

x, = 1, (stuck - at - one test). (3.19)

The general equations for generating the test vectors are

Oc/(z, 0) = 1, (stuck - at - zero test) (3.20)

Otcf(x, 1) = 1, (stuck - at - one test). (3.21)

Typically, several solutions exist for a given single stuck-at fault test. As an example,

given a stuck-at-zero test, each solution corresponds to a particular minterm of the function

01oC,(_, 0) (see Appendix A, Solutions of Boolean Equations). Any of these solutions will

yield a test vector capable of detecting a stuck-at-zero fault on the fault node, so one is

arbitrarily chosen, set equal to one, and solved for x to provide one of the solutions to

(3.20). As is the case with the example, to get all possible solutions the function O'cf

must be expanded with respect to the variables not explicity present in each term.

3-6

Given the example circuit, expanding the left-hand-side of equation (3.18) identifies

the minterms of the function on the left-hand-side. The following equations, which set

each of the minterms equal to one, will yield the two solutions available for testing a

stuck-at-zero fault on node yi:

x'X = 1, (322)

Xx 2 = 1. (3.23)

As an aside it should be noted here that the example chosen is relatively simple to promote

clarity of the explanation. It may be misleading because the derivation results in very trivial

test vector equations (3.18, 3.19), and hence only two minterms for the chosen stuck-a.t

fault. A more complex test vector equation might be

x1 +- = 1, (3.24)

which when expanded leads to

11 xI + zIx 2 + xIx' = 1. (3.25)

resulting in three minterms, and therefore three possible vectors.

To continue the example later will arbitrarily choose the solution obtained from

equation (3.23) as the test vector to apply.

In the general case the following equation represents a particular choice of several

minterms that could be used to yield vectors:

m(z) = 1, (3.26)

where i is a number from 0 ..2 m - 1. The variable rn is the number of primary input

variables.

Continuing the example, the vector [XI = 0, X2 = 1] is the solution of equation (3.23)

for the primary input variables z.

3-7

Running an Input/Output Experiment. Having generated a test vector the

process continues with the application of that vector to the circuit's primary inputs. As-

suming a digital circuit conforming to a two-valued Boolean algebra, each of the elements

of z will take on one of two logic values, ri E {0, 1), following vector application. Subscript

i denotes the minterm m,(j) used to determine the applied test vector, and j specifies the

output z, in the circuit that is read by the user to get the result. Mathematically this

point is represented as follows (18:80):

m,(_) = 1 => zi = ri3, ri1 E {O, 1}. (3.27)

Using this notation to describe an experiment with the example circuit yields the

following two equations (one for each output):

mi(xi,x 2) = 1 = z= rj, r1 , E {0, 1 (3.28)

and
m 1 (xt,x 2) = 1 > z2 = r, 2 , r1 2 E {0, 1). (3.29)

Assume that in the ongoing example the application of the vector [0,1] resulted in a

one on both outputs zl and z 2 (for the sake of an example we could pick any of the four

possible combinations for the outputs). Therefore

XX2= z = 1, (3.30)

and
X z2 = 1. (3.31)

Analysis of Input/Output Experiment Results. This discussion shows how

the result of a test is analyzed to determine if a fault has been detected. Analysis is done

in two steps. In the first step a term is constructed for each output of the circuit that

is accessible by the suspected faulty lne. Each term is constructed using two items: the

particular minterm that supplied the vector used in the experiment, and the result of the

experiment taken from the output being used to construct the term (ie., minterm ml(_)

combined with result r12 which has been read from output Z2). The second analysis step

3-8

compares each term to the original circuit description to determine if a fault has occurred.

Comparisons are only made with respect to the same output that a term is constructed

with. For example, a term constructed with an output z, will only be compared with the

equation from the circuit description t,.at relates the primary inputs to output z2 .

In step on" a method developed by Kainec is used to combine the minterm used to

get a test vector with the result of app!ying the vector (18:80-81). A particular vector

results from the solution of equation (3.26). Application of a vector derived from this

equation implies a result of the form in equation (3.27) (18:80). This implication is shown

in equation (3.27).

The combination of the minterm and the result of applicationy begins by comple-

menting the equation that sets the arbitrarily chosen minterm equal to one. Using our

chosen example minterm, the complement of the equation containing this minterm is

m'1(XlX2) = 0. (3.32)

In the general situation the complement is

m,(._) = 0. (3.33)

By equation (A.30) the right side of the implications in equations (3.28) and (3.29) are

changed to:

z, E ri = 0 (3.34)

and

42 r12 = 0. (3.35)

To ge' the general equation we make the change to the right side of the implication

in equation (3.27) to get

zi D rie = 0. (3.36)

3-9

Rewriting the implications in (3.28) and (3.29) with substitutions (3.32), (3.34) and (3.35)

m '(x1, x2) = 0 =>Z, r I = 0, (3.37)

m'(xl,x 2) = 0 =:> z 2 r12 = 0. (3.38)

In general

m(_)=0 => j i 0. (3.39)

By the Extended Verification Theorem (Appendix A) (3.37) and (3.38) become

A rll < m'(x 1, x2) (3.40)

z2 r1 2 !_ m'(x 1 , X2). (3.41)

The general relation is

zj t ri, _< m'(-). (3.42)

From equation (A.10) equations (3.40) and (3.41) are equivalent to (18:81)

m1(x 1 ,x 2),- -I r11) = 0 (3.43)

mI(xI,X 2) • (z2 rl2) = 0. (3.44)

Generally

mjx). (z ri,) = 0. (3.45)

Therefore when provided with a specific value for a given output resulting from

application of a test vector we form one of the following two equations for each output:

mi(x) . = 0 (r, = 0), (3.46)

m, -z' = 0 (ri = 1). (3.47)

3-10

We assumed earlier that following application of the test vector [zx = O,X2 = 1] (obtained

using minterm mn(XI, x2)) both of the outputs were equal to one. Therefore for the example

equation (3.47) yields

, = 0, (3.48)

x 1 X 2 • z 2 = 0. (3.49)

Step two of the analysis process shows how these terms are compared to the equations

that make up the original circuit description (the output equations) to determine whether

or not a fault is present. For example equation (3.48) is compared to the output equation

that relates z, to the primary inputs. Equation (3.49) is compared to the z 2 output

equation.

Each output equation is represented as a function of the output and the primary

inputs set equal to one. The output equations for the example are

zI 0 (XI +X) = 1, (3.50)

z2 !' (XI + X2) = 1. (3.51)

Simplifying these equations gives

xIzI + x1z2 + Xz12Z= 1, (3.52)

XlZ 2 + X2z2 + XlX2Z = 1. (3.53)

In general the output equation for a particular output is

Ox, zj) = 1. (3.54)

To match the form of the term(s) formed in the first analysis step both sides of this

equation are complemented.

The general equation is

zj) = 0. (3.55)

3-11

The application of a given vector results in one of two conditions. Either a fault

is detected or not. The case in which a test results in no fault being detected yields the

following implication:

z'(xj 0 z:1 m=().(zjr,)= 0. (3.56)

fhis implication states tnat the original fault-free circuit representation implies a particular

fault-free result. By extended verification (see Appendix A) this is equivalent to stating

that the term formed in step 1 is logically included in the output function (the left-hand-

side of an output equation) associated with that term. This output function is a fault-free

circuit description. The general form of this logical inclusion is

M,(4) (zj e rij) < J,(_z). (3.57)

Using equation (A.10)

w(_,) [m,(x_) . (zj (D e-,)] = 0. (3.58)

If in fact the vector in question results in the correct output for the specified function

then this equality will be satisfied. If evaluation of the left-hand-side is not identically equal

to zero then a fault has been detected.

Returning to the example, equation (3.58) is used twice to compare the terms from

the left-hand-side of (3.48) and (3.49) with the left-hand-sides of (3.52) and (3.53) to get

(xzi + xz 1 + x'x 2z') •('x 2 - z) = 0, (3.59)

(xIz 2 + Xz2 Z2 + x'x2z,) (X'X2 . Z') = 0. (3.60)

Simplification shows that the left-hand-sides of both equations evaluate to zero. If one or

both had failed to do so then Y1 would be stuck-at-zero. An initeresting result is that when

a failure does occur the left-hand-side of the equation that showed the failure evaluates to

the term used in the comparison (developed in step one of this section).

3-12

Bridge Faults

The process for generating vectors to diagnose bridge faults is very similar to that

of single stuck-at fault diagnosis. An overall CCE is derived and combined with an FCE

describing the circuit in question. The resulting equation is then manipulated to get an

OCE. Variations that exist in this process when diagnosing bridge faults will be made

apparent in the following subsection. An example that is babed on the circuit in Figure 3.2

will be used to derive the general forms of the CCE and OCE (the FCE does not change).

Note that the section on single fault diagnosis discussed the following three top-

ics: vector generation, running an input/output experiment, and analyzing the results of

that experiment. This section only addresses test vector generation because there are no

variatiens in the way the last two activities are conducted.

Test Vector Generation. When considering bridge fault diagnosis the CCE from

equation (3.7) in the single fault diagnosis section is similarly derived, only this time with

respect to the two lines that are suspected to be bridged. As before we begin by listing

the individual CCEs of the circuit. Using the example circuit in Figure 3.2 the individual

CCEs are

Y1 X', (3.61)
1 XzI =.Y1 + 2

Z2 X2 '.

For the example circuit the suspected bridged lines are x, and X2. Both lines are "cut"

as before and substituted by test variables resulting in the following system of equations:

yj = TESTI (3.62)

z, = Y'+TEST

z2 = TEST.

3-13

cut

cut

Figure 3.2. Example Circuit for Combinational Bridge Fault Diagnosis

Using equations (A.31), (A.52) and (A.53) this system of equations is equivalent to

[yi 0 TEST]l - [z, 0 (y' + TEST2)] - [Z2 0D TEST2] = 1. (3.63)

Simplification of this equation yields

14~'TESTITEST2 + Y'ZIZ 2TESTITEST2+ (3.64)

ylz'z'TESTITEST2 + YIZIZ 2TEST 1 TEST2~= 1

As before the disjunctive eliminant is used to eliminate all internal variables ()resulting
in the following overall CCE:

Z2z'TESTITEST 2 + ZIZ 2 TESTiTEST2+ (3.65)

ZI Z'TESTITEST 2 + z, z2TESTjTEST2 1

In general the overall CCE for bridge fault diagnosis is

3-14

'kci(, TEST,, TEST, z)=. (3.66)

The FCE is developed by combining the individual output equations as before. The

individual output equations for this example are

Z= = XI + X2, (3.67)
1

Z2 = X2. (3.68)

These equations are combined to get

[z1 0 (X1 + x2)] . [z2 (D:] 1. (3.69)

After simplification of this equation the FCE for the example circuit is

X1 X2 ZlZ 2 + XIX 2 ZZ 2 + x12zz 2 1. (3.70)

The OCE is the result of combining the CCE and FCE and then eliminating the

output variables from the resulting equation. Using the example the combined CCE and

FCE equation is

I I

Xl 2Z' z2TEST TEST2 + xjx 2z 1z'TESTITEST2 + x'zlz 2TEST - 1. (3.71)

Eliminating the output variables yields

XI 2TEST TEST2 + X 1 2TESTITEST2 + z 2TEST2 = 1. (3.72)

The general form of the OCE for bridge fault diagnosis is

O0,,(_, TEST,, TEST2) = 1. (3.73)

3-15

As in the single stuck-at fault vector generation process the complement of the left-hand-

side is set equal to one. For the ongoing example

x,ITEST TEST2 + x2 + TEST2 + x'TESTTEST2 + ZxTEST 2 = 1. (3.74)

In general

0',f(x, TEST,, TEST) - 1. (3.75)

In the case of bridge faults:

TEST, = TEST2 . (3.76)

Therefore when one variable is zero (one) then the other will be zero (one). Inserting this

information into equation (3.74) (7:18)

X2 = 1 (3.77)

when both test variables are zero and

x,+x = 1 (3.78)

when both test variables equal one.

These equations are combined to get

X1 X2 = 1. (3.79)

In general the equation used to yield test vectors is

@oc (! 0 ',0) cf(IL, 1, 1) = 1. (3.80)

Any minterm of the left-hand-side of this equation, when set equal to one and solved,

will yield a test vector that can be applied and analyzed as before to detect and isolate a

3-16

cut
yr

1

_z2
x2

cut

Figure 3.3. Example Circuit for Combinational Multiple SA Fault Diagnosis

bridge fault for the suspected lines. In the example only one minterm remains and therefore

the only applicable test vector is [xI = 0, X2 = 1].

Multiple Stuck-at Faults

Multiple stuck-at fault diagnosis is an extension of the single fault case. The varia-

tions that exist for test vector generation are illustrated by example (using Figure 3.3) in

the following subsection.

Test Vector Generation. The overall CCE is derived with respect to the lines

being analyzed. From the example circuit the individual CCEs are

yz= ' (3.81)

Y2 =X2

z1 = + X2

Z2 = y' + y.

3-17

The suspected faulty lines are x1 and Y2. Cutting these lines yields

y,= TEST' (3.82)

z2= y + TEST2.

Combining this system of equations we get

[y, ?) TESTf] - [z1 (D (y' + X')] -[Z2 0 (y' + TESTS2)] = .(3.83)

Simplifying this equation yields

y, zz 2 TESTi + x2 y, zzTESTTEST2 + X2YI Z'Z 2TEST1 'TEST2+ (3.84)

x~y, z, zTESTTEST2 + x'2yz, z2TESTj'TEST2 1

As was done before the internal variables (y) are disjunctively eliminated to get the overall

CCE

z, z2TEST1 + X2Zz'TESTTEST, + X2 z'Z 2TESTTEST2+ (3.85)

x~1 XZTESTITEST 2 + x'ziz 2TESTITEST2 1

In general the OCE for multiple stuck-at fault diagnosis is

,f(,TEST,, TEST 2 ,.. ., TEST,,i 1)(.6

where n is the number of variables being tested.

Combination of the individual output equations provides the circuit FCE. The output

equations for the example are

3-18

zI = XI + x1, (3.87)

z2 = Xl + X2. (3.88)

They are combined to get

[zi D x, + x']2zx +x = 1. (3.89)

Simplification yields the following FCE for the example circuit:

xIx 2 z'z 2 + x'x'zlz' + XIZIZ 2 = 1. (3.90)

The overall CCE is combined with the FCE. For the example this combination results

in the following equation:

xlzjz 2TEST + x'x 2zz 2TESTITEST2 + xz'zzlz2TESTITEST 2+ (3.91)

xlx zlz 2 TEST2 = 1.

The output variables are eliminated as before resulting in the following OCE:

xTESTI + xZX 2TEST tTEST2 + Xlx'TESTTEST2 + xlx'TEST2 = 1. (3.92)

For multiple stuck-at fault diagnosis the general OCE is

G 1 () , TEST1, TEST2, ... , TEST,,) = 1. (3.93)

As in the single stuck-at and bridge fault routines the left-hand-side is complemented. For

the example circuit the result is

X2TESTTEST2 + x 1TESTTEST2 + Zx 2TEST,+ x'TEST, + x'xTEST2 = 1. (3.94)

3-19

In general

O'f(_,TEST,, TEST,..., TESTn) = 1. (3.95)

The suspected stuck-at values are substituted for the appropriate test variables in this

equation to yield test vectors capable of detecting the particular fault condition specified.

For the example we suspect x, and Y2 (TEST, and TEST2) of being stuck-at zero and

one, respectively. Substituting these values in equation (3.94) yields

X1 + X 2 = 1- (3.96)

Minterms of the left-hand-side of this equation will lead to test vectors that are

capable of detecting the specified muliple stuck-at fault condition. The minterms are

generated, as before, by expanding with respect to the input variables to get

XJX2 + X1X2 + 1X12 = 1. (3.97)

Any of the minterms lead to test vectors. One is arbitrarily chosen and application and

analysis proceed as before.

Sequential Circuit Diagnosis

This section addresses the mathematical development of the diagnostic routine for

sequential circuits. A given sequential circuit is first modelled as a purely combinational

circuit. The process then uses the methods discussed in previous sections to generate test

vectors based on the type of fault suspected. Also considered in the generation of test

vectors is the current state of the circuit. The state of the circuit is determined by reading

the values of the memory elements in the circuit. The circuit in Figure 3.7 will serve as an

example for deriving the equations used in the process.

Modelling Sequential Circuits as Combinational Circuits. Figure 3.4 shows

a generic model of a synchronous sequential circuit (19:50). The combinational block,

3-20

x "-z

C excitation

I lin e s

q

q-- S _clk

Figure 3.4. Model of a Sequential Circuit

C, represents an arbitrarily complex combinational circuit while the sequential block, S,

includes any number of clocked sequential elements, typically flip-flops.

The sequential circuit model is converted into a totally combinational circuit by

-,flattening" the sequential circuit. The result of flattening the circuit in Figure 3.4 is

shown in Figure 3.5 (19:50). This figure illustrates several stages of the circuit, each

representing discrete moments in time.

The key to flattening, as illustrated in each stage of Figure 3.6, is to treat the present

state of all memory elements as primary inputs to the combinational network. The next

state of each element is treated as a primary output. To do this each memory element

must be described by its characteristic equation which can be viewed as a combinational

circuit description. Fuji wara describes the use of the characteristic equation in this way as

a pseudo flip-flop (12:72). An example pseudo JK flip-flop is shown in Figure 3.6.

Vector Generation. Figure 3.7 will serve as an example for development of the

procedure for generating test vectors. It contains combinational circuitry and two memory

elements (JK flip-flops). The flattened circuit is shown in Figure 3.8.

The generation of test vectors for the flattened circuit begins with Cerny's approach

3-21

x L (1)L2)L() i (i)

q (1) C q- (2C

S S

cikk cik

q n (1 n(2) qn_0

Figure 3.5. Flattened Sequential Circuit Model

J

(Present State]'

K'x

Statee

Qn= J Q' + K'Q

Figure .3.6. Pseudo AK Flip-flop

3-22

CP

xl

q2K I

q21 q2

q1i q2'

ql q

Figure 3.7. Example Sequential Circuit

3-23

q2'

q~n.

q

q2

qlxl

Figure 3.8. Flattened Example Circuit

.3-241

for generating test vectors. For this example we will generate a vector capable of detecting a

single stuck-at-one condition on node x1. The following individual CCEs from the flattened

circuit support the generation of an overall CCE:

qn= Jql + kIq1 (3.98)

q2n = j2q/ + k2q 2
=

zi qI'q2XI

jh = x ,q'2

k = x11 q2

J2 = xtqj2 xlql

k = x I q'.

Cutting node xl leaves

qln = j 1qI + kIq, (3.99)

q2n = j 2 q2 + kq 2

Z1 = qI1q2TEST

j = TESTq2'

k = TEST'q2

j2 = TEST'qI
k = TESTq'.

This system of equations is collapsed into one equation just as before, using the exclusive-

nor operator and multiplication, resulting in

tkllklqlq2q',q'2,z' T E S T + jl klJj'k 2ql q2qlnq'nzTEST+ (3.100)

., ., qq, q z TEST' +.I3j klj2k'ql q2q',,q2, 'ET + j3l klJ2k' 'nq 2ql q2q ,qzl TEST +

j'k q q2qIq2nz' T E S T -+ j lkjk2q'q'qlq'nz'TEST+

1k'j2ikqIq'qq2,z'TEST = 1.

3-25

The internal variables (j and k in this example) are disjunctively eliminated leaving the

overall CCE

q q ~qq',z'TEST'+ qtq 2q'nq'nzITEST + q qq2q',qmnZTEST'+ (3.101)

qjq 2 q',nq 2nz'TEST' + q q2qinq2 zl TEST + q'qqq~n TEST+

qlq'ql,q'qiz'TEST = 1.

In general the overall CCE for a sequential circuit test will be

0ccf -q(I,q, TEST,zI, qn) = 1 (3.102)

where 1 represents the present state of all memory elements, and gn are the next states.

The number of test variables in TEST depends on the type of fault being diagnosed (single

stuck-at, bridge, multiple stuck-at).

The next step, as we continue to follow the original Cerny method for generating

test vectors, is to derive an FCE for the circuit The FCE is a combination of the output

equations in the circuit. To reiterate, the output equations are those equations that set

a primary output equal to a function of the primary input variables that feed the output

(directly or indirectly). For a flattened sequential circuit the next states of the memory

elemerits are also primary outputs. The present states are primary inputs. The output

equations for the example circuit are

qhn = xlq'q' + xlql + qjq' (3.103)

q2n = xzq q 2 + zxq2 + qlq2

z, = zlqlq2.

3-26

These equations are combined yielding the FCE

x1q1q1q', q', Z' + x'q 2 q, 1q,, + xlq-q2q1,q 2 nzl+ (3.104)

xlqq 2q,'nq2nz' + xlq'ql,q 'I + xlqlq2 qlq 2,Z' = 1.

The general form of the FCE for sequential circuit diagnosis is

Pf cf-seq(:, q, z. qn) = 1. (3.105)

The next step is to combine the overall CCE and the FCE, which results in the

equation

/ I I ' 1

In +,~~~~qz, TEST + x'~'n~ (3.106)

x l q'qlnq',z'TEST + x'qlq'qlnq2nz'TEST' + xlqlq2 qlnq2nz'TEST = 1.

The outputs (including the pseudo outputs L,) are then eliminated to get the OCE for the

given suspected faulty line yielding

xIq'qTEST' + xlq'q 2TEST + x'q 2TEST' + xlq'TEST+ (3.107)

xtq1 qEST' + xlqlq2TEST = 1.

The general OCE for a sequential circuit is

@oc _-seq(:,q, TEST) = 1. (3.108)

The left-hand-side of this equation is complemented and set equal to one. For the

example this yields

xTEST'+ x'TEST = 1. (3.109)

In general

3-27

01c.f_,q(j, q, TEST) = 1. (3.110)

The next step to test for a single stuck-at-one fault is to substitute one into this

equation for the test variable. The following equation results from the substitution for the

example circuit

X, = 1. (3.111)

In general this step depends on the type of fault being diagnosed (details are found in the

respective sections of this Chapter for each type of fault). As shown in this example a

single stuck-at fault requires the substitution of a logic value (0 for the SAO test, 1 for the

SA1 test) for the single test variable in equation (3.110). For bridge fault diagnosis there

are two test variables and equation (3.110) is used to form a new equation that describes

the effects of having the two lines bridged. Multiple stuck-at fault diagnosis involves any

number of test variables . Each of the test variables in (3.110) are substituted with the

logic values that they are suspected to be stuck at.

Expanding equation (3.111) with respect to the pseudo input variables that are not

present (q) we get

Xlqlq2 + Xlqfq2 + xlqlq' + xjqfq2 = 1. (3.112)

Referencing equation (3.111) we have an example that turns out to be rather trivial.

The variables () representing the current state of the circuit have completely dropped

out of the derivation. As shown in the expansion, when they do all drop out then they

can be equal to any logic values to begin testing. In this case the current state of the

circuit is irrelevant when testing node x, for a single stuck-at fault. It is important to note

that on the average the variables (1) representing the current state of the circuit will not

typically drop completely out equation (3.111). In the typical case, when they do survive

in equation (3.111) the values that are generated represent a state that the circuit must

be in to begin testing. For example, if (3.111) were

3-28

xlqlq2 = 1 (3.113)

then the current state of the memory elements would have to be one and zero, respectively

before applying the vector z = 1.

In any case we see the need to know the current state of the circuit before testing

can begin. There are two ways to proceed. The first way is to attempt vector generation

by directing the user to read the current values of the memory elements and enter them.

The values are substituted into equation (3.112) and the minterm that remains will yield

a test vector. The second way to proceed is attempted if the first fails. This alternative

takes advantage of the fact that all well designed sequential circuits have a means of being

cleared or reset. The user is directed to reset the circuit and input the values that result

(typically all zeros). These values are substituted in equation (3.112) and the resulting

minterm will yield a vector.

In the example circuit we will begin by assuming that the current values of memory

variables q, and q2 are zero and one respectively. These logic values are subsituted into

equation (3.112) for the memory variables resulting in

XL = 1. (3.114)

In this case a vector has been generated. If the left-hand-side had reduced to zero we would

then reset the circuit and substitute the resulting values of the memory elements (assume

zero for both) aq follows

X, = 1. (3.115)

The minterm can be taken from the left-hand-side of (3.114) and used to generate a

vector. The vector is then applied. Note that if the equation (3.113) had been generated

instead of (3.111) then neither of the two attempts would have resulted in a test vector.

3-29

Input/Output Experiment and Analysis of Results. Once generated the test

vector is applied and the outputs are read as before. After application the outputs of

the sequential circuit are in there "next" states and are read and fed back in as primary

output results. Terms combining the vector and result of application are formed as before.

Only this time before comparison to the original circuit equations the states of the memory

variables prior to application are substituted into the original circuit equations. For valid

results the original equations must be initialized to match the configuration of the circuit

that existed before the vectors were applied. This step is best illustrated by example.

In the example the output equations are modified using the exclusive-nor operator to get

equations that set functions of the inputs and output variables equal to one as follows

in + xrq 2 q n + q'q2qI, + rjqlql,, + qlqqln + xiq'qi, = 1 (3.116)

1xlqlq2,n + xlq2q ,n + q'q'q',n + xlq'q'n + qlq2q2,n + xlq~q2,n=

1 zl + zlq'q 2z1 + qz' + q1zl = 1.

These equations are initialized with zero and one for the memory variables q, and q2 (since

these are the values they held before applying the test vector), respectively to get the

following equations:

n= (3.117)

x + q2. = 1
X1Z 1.

These are the equations that are compared to the results gained from applying the test

vector.

Another Approach to Vector Generation

This section describes a method that yields the same results as Cerny when one

output variable exists. Two descriptions of a given circuit are developed that relate a single

3-30

circuit output to the primary inputs. To get the first description we begin by choosing

an output accessible by the suspected faulty node (which we will call the test node) and

ignore all other circuit outputs. A relationship between this output, the primary inputs

and the test node is derived. This relationship uses Cerny's "cut node" idea by ignoring

any logic previous to the suspect node and replacing the node with a test variable. The

second description is just the basic Boolean equation that relates the primary inputs to

the output chosen for the first description.

We will use the example from the single fault vector generation section to explain

the process. The suspected faulty node is Yl. Derivation of the first circuit description

begins, like Cerny's method, by identifying the individual CCEs of the circuit. These are

' (3.118)Yl --- Xl

Y2 = X2

Zl = Yl + X 2

= Yj + Y2.

Reviewing this system of equations shows that the test node has access to both outputs.

Output zl is arbitrarily chosen to form the two circuit descriptions. We will call the

equation that has this output as its left-hand-side the output equation. With this in mind

all other equations involving outputs are deleted yielding

= (3.119)

Y2 = X2

z2 = 1 +x2

Also deleted are those equations that relate the test node to logic feeding the test node

leaving

3-31

Y2 = X2 (3.120)
zi =zI = Y1 + X2-

The next modification to the system of equations is to substitute the internal variables in

the output equation with any logic functions, equal to these internal variables, that remain

in the system of equations. For the example none remain, however if the variable x2 in the

output equation had been a Y2 then this variable would have been replaced with X'.

The next step is to delete all equations except for the output equation leaving

zI = Y1 + X2. (3.121)

The last step is to replace the suspected faulty node with a test variable as follows

zi = TEST' + 4 . (3.122)

In general the first description is

Zi = fj(_, TEST). (3.123)

The second description is the chosen output set equal to the function of primary

inputs that feed it. This is

Z= "1 1 X2.' (3.124)

In general the second desription is

zi= f2(W). (3.125)

3-32

For a fault to be detectable the faulty description (right-hand-side of 3.123) must

exhibit an opposite function than the fault-free description (right-hand-side of 3.125). This

point is mathematically realized by setting the negated right-hand-side of (3.123) equal t

the right-hand-side of (3.125). For the example

(TEST' + x')' = z + x 2. (3.126)

Simplifying this equation, using the exclusive-nor operator, yields a function of the inputs

and test variable set equal to one as follows

XIx 2TEST'+ xIX 2TEST = 1. (3.127)

In general we have derived what will be called a diagnostic circuit equation (DCE).

The DCE is

Tdcf(!,TEST) = 1. (3.128)

As we did in Cerny's method substitution of zero and one, respectively, for the test

variable will yield minterms that lead to vector(s) capable of detecting stuck-at-zero and

one conditions. In the example the result of subtituting zero and one leads to the following

two equations

XIx 2 = 1, (stuck - at - zero) (3.129)

XIX2 = 1,(stuck- at - one). (3.130)

Note that this result is slightly different than the Cerny result given that the Cerny method

uses both outputs to sensitize a path for the suspected faulty node.

3-33

IV. Mathematical Development of Extensions to Kainec's Diagnostic

System

This Chapter discusses the extension to the Kainec diagnostic system (18) which

has been achieved. The extension incorporates the capability to detect stuck-at faults in

multiple output circuits. The mathematical basis for the development of the extension

begins with a discussion of Kainec's original stuck-at fault diagnostic system. Following

this review the method for diagnosing multiple output circuits is developed.

Stuck-at Fault Diagnosis

This section reviews the original diagnostic system developed by Kainec for diagnos-

ing multiple stuck-at faults in combinational circuits.

Checkpoint Fault Model. Kainec's system tests for multiple (as well as single)

stuck-at fault conditions by designating critical points in a circuit as checkpoints. Check-

points are defined by Bossen and Hong to be fan-out branches of lines which fan out, and

primary input lines that do not fan-out (5:1252). Figure 4.1 identifies the checkpoints for

an example circuit. The smaller boxes in this figure label the circuit's checkpoints, and

are known as checkpoint logic gates. Checkpoint logic gates form the basis for developing

a checkpoint model to describe the possible stuck-at fault conditions of a particular line.

Figure 4.2 shows Kainec's revised version of the checkpoint model for stuck-at faults

originally developed by Bossen and Hong (5:1253-1254). For each checkpoint in a circuit

the revised model introduces two checkpoint variables' to describe the three possible states

of the line: normal, stuck-at-0 or stuck-at-1. The elements of Figure 4.2 lead to the

following equations:

cout = C1 + Coxin, (4.1)

coc1 = 0. (4.2)

'The original model, which introduces three variables, was improved upon by Kainec (18:65-68).

4-1

xl

x2
z

Figure 4.1. Checkpoint Placement

Consequently in a description of a circuit containing a node labeled x (where x is a check-

point of the circuit), x is replaced by the right-hand-side of equation (4.1) to model the

possible stuck-at fault conditions on x. Equation (4.2) establishes the fact that x, and

therefore any checkpoint in general, can't be both stuck-at-zero and stuck-at-one. This

equation represents a constraint introduced by the checkpoint model and must become

part of the circuit description.

Derivation of Characteristic Equation. Having chosen the checkpoint model

to describe the possible conditions of the critical points in the circuit, the next step is to

develop a characteristic equation for the circuit (18:69-77). The characteristic equation

describes the circuit in terms of the primary inputs, checkpoint variables and the cir -uit

output. Once developed it is manipulated to generate test vectors, to determine the lo-

cation of faults by deducing the logic states of the checkpoint variables, and to find the

actual function of the circuit.

4-2

co c I

xin c out

a) Checkpoint Logic Gate

co ci output Node Conditions

0 0 x in Normal

0 1 1 Stuck-at-I

1 0 0 Stuck-at-0

1 1 -Cannot Occur

b) Logic Gate Truth Table

co ci

Xin 00 01 11 10

0 0 1 d 0

1 1 1 d 0

C out =ci + co' X i
cod = 0

c) Karnaugh Map

Figure 4.2. Checkpoint Model

4.3

clou

x 2

z

xF3

Figure 4.3. Example Circuit

4-4

Using Figure 4.3 as an example, the derivation begins with descriptions of each

module in the circuit:

Z = f3(YI1.Y2) (4.3)

Y2 = f2(C30,.t)

Clout = C11 + cl1011

C2cLt = C2 1 + C12 0 X 2

C3out = C3 1 + C13X 3 .

Using equations (A.30), (A.48) and (A.49) this system of equations can be combined

in a form that sets a function of the inputs, checkpoint variables and output equal to zero.

Z 'D f (Y1,Y2) + (4.4)

Yi f f(Clout,c2ot) +

Y2 D f (c 3 o0) +

Clu D(cii c'1 0xi) +
c~u (C21 + C'0 X2) +

C3out e (C31 + C'30 X3) = 0.

As in equation (4.2) the following equations constrain the characteristic Equation

when using the checkpoint fault model.

CICO= 0(.)

C120= 0

31C0= 0.

These equations are appended to equation (4.5) using equations (A.48) and (A.49).

.4-5

Z f f(Y], Y2) + (4.6)

Yl f(Clout, C2ot) +

Y2 ' f(C3ot) +

Clout (clI + C'ozI) +

C2out (c2 1 + C'20 X2) +

C3.ot (c, 1 + C'z3) +

CIICI0 + C21C 20 + C3 1C30 : 0.

As noted before the characteristic equation is a function of the inputs, checkpoint

variables and output. Consequently all internal variables are eliminated using the conjunc-

tive eliminant defined in Appendix A. The result of eliminating Clo,t, C2ot,C3out,yl, and

Y2 from equation (4.7) leaves the following general form of the characteristic equation:

Z) = 0. (4.7)

Generation of Vectors. An effective test vector is an input-vector that provides

information about the circuit output that could not be gained prior to application of

the vector (18:77). Therefore in the search for effective vectors the checkpoint variables

are logically eliminated from equation (4.7) using the conjunctive eliminant leaving the

equation:

O(_, z) = 0, (4.8)

where

((z,z) = ECON($(_,c,z),c). (4.9)

A function i(x) is defined by

z(.r) = EDIS(O(Z, z), z). (4.10)

Kainec has shown that any solution of the equation

4-6

= 1 (4.11)

is an effective test vector (18:79).

Incorporation of Input/Output Experiment Results. This discussion shows

how the result of a given test vector application is incorporated to later determine if a

fault has been detected.

Given m,(_), an arbitrarily chosen minterm of i'(1), the unique solution of

m,(x) 1 (4.12)

is an effective test vector (18:80).

The output z obtained from applying this vector will take on one of two logic values,

r E {0, 1}. Therefore,

m(x)= I z=r rE {0, 1}. (4.13)

Equivalently,

m (x)=0 = z ?r= 0 (4.14)

(18:81). Using the Extended Verification Theorem, detailed in Appendix A, this relation

is equivalent to the inclusion

z r < m,(_). (4.15)

By equation (A.10)

rn(z) • (z (P r) = 0. (4.16)

Therefore,

m,(_) . z = 0 (r = 0), (4.17)

4-7

z' = 0 (r = 1) (4.18)

(18:8 1).

Once one of these results is obtained it can be combined with the characteristic

equation using equations (A.48) and (A.49). The resulting equation is then used to generate

the next test vector. The process is iterated until no further information can be obtained

from the process. This condition is evident when the input function i(,K) enlarges to the

point that it eventually becomes identically equal to one (18:87). Also, after all of the

possible iterations are accomplished a final characteristic equation exists that includes the

original characteristic equation and the information gained from all vector applications.

Interpretation of Results. When all possible information has been gained from

vector generation and application the next step in Kainec's method is to use this infor-

mation to determine the actual circuit function (18:87-90). Once this is determined it can

then be used to identify the states of the checkpoint variables, and hence the locations of

faults.

The final characteristic equation , _, z) = 0, which includes the initial character-

istic equation (4.7) and the results of all vector applications, is used to arrive at a function

®(x, z) that relates the inputs to the output of the circuit:

O(x,z) = ECON(O,(I_,c,z),c). (4.19)

Kainec shows that the function that the circuit is actually performing, which is called

F(I_), is obtained by setting z equal to zero in O(z, z) (18:88,90).

To determine the possible checkpoint states a function G(c) is defined as

G(c) = ECON(f ,(_,c, z), z). (4.20)

The possible checkpoint variable states are found as solutions to (18:92)

G'(c) = 1. (4.21)

4 -A

Extensions for Multiple Output Circuit Diagnosis

From a strictly mathematical (versus implemental) viewpoint Kainec's procedures

can be used to test multiple output circuits by simply changing the scalar output z in his

derivations to a vector z. The primary mathematical change described here is done to

take advantage of the capability to choose an optimal vector from a group of effective test

vectors. This capability is apparently specific to circuits with multiple outputs. Currently

no method exists for choosing an optimal vector when diagnosing single output circuits.

As mentioned before, an effective vector is one that provides information about the

circuit output(s) that cannot be deduced prior to application of that particular vector. An

optimal, or "best", effective vector is one which is part of an experiment that will minimize

the number of total test vector applications required to diagnose the faults in a circuit. At

each iteration of vector generation a standard can be used to choose the best vector from

a group of effective test vectors.

The following discussion will show how and why this standard can be used when

diagnosing multiple output circuits as opposed to single output circuits.

Single Output Generation. Kainec's single output vector generation procedure

will typically produce a set of effective vectors at each iteration of vector generation (18:80).

Jumping ahead in the previously described process for test vector generation equation (4.8)

is repeated below. It describes the relationship between the primary inputs and the output

after an iteration of the vector generation process.

0(:, z) = 0. (4.22)

Up to this point the only difference between single and multiple output diagnosis is the

scalar output z versus the vector z.

The next step disjunctively eliminates the output variable from the left-hand-side of

equation (4.22) to get the input function i(I_). Kainec has shown that the input function

is equal to zero (18:79)

4-9

i(1_) = 0. (4.23)

Complementing this equation results in the following equation:

i'(1) = 1. (4.24)

In single output diagnosis manipulation of equation (4.22) results in (4.24), which

involves only those terms from (4.22) that have no information regarding their relationship

with the output variable. This point is llustrated by taking a specific example of (4.22),

namely

abz' = 0 (4.25)

where a and b are input variables and z is the output variable. By expanding this equation

with respect to the input variables all of the possible input combinations associated with

thp equation a-e shown without changing the equation. This is not part of Kainec's original

vector generation procedure, but makes it easier to see what is occurring.

ab(z') + ab'(0) + a'b(O) + a'b'(0) = 0. (4-26)

Equation (4.26) shows that the first term, abz', has complete information relating the

specific input combination a = 1, b = 1 to the output z. Setting the term equal to zero

(using equation A.32), abz' = 0 yields the information that a = 1, b = 1 and z = 0 is false.

Therefore whei'rer this input combination is applied the output z will equal one. There

is no need to apply this input combination because we already know what the result will

be.

The last three terms, however, provide no relative information regarding the output.

These are the terms that remain when we disjunctively eliminate the output z from the

left-hand-side of equation (4.25), set the result equal to one, and complement the resulting

equation. This is the process that was done to get equations (4.23) and (4.24). The result

4-10

of this process is

ab' + a'b + a'b' = 1.

Each term, when set equal to one and solved, will yield effective test vectors.

The main point to be seen here is that with a single output there are two alternative

types of terms that exist in an equation such as (4.22) that relates inputs to output: terms

that provide complete information regarding the relationship between a specific input com-

bination and the output, and those that provide no output relationship. Equation (4.22)

is manipulated to generate the latter.

Multiple Output Generation. Given the case of multiple outputs, the possible

combinations of output variables provide three alternative types of terms in an equation

relating inputs to outputs: terms that give complete information, terms that give partial

information, and terms that give none.

Adding an output v to the example will illustrate these alternatives. Take the equa-

tion

a'-' + a'b'z = 0.

Expanding (a necessary addition to the procedure for multiple outputs), as before, with

respect to the primary inputs

a'b'(v' + z) + a'b(vr) + ab'(O) + ab(O) = 0. (4.27)

In the first term of equation (4.27) both outputs are represented and therefore com-

plete information is present. We know exactly what the values of the outputs will be if we

apply the vector a = 0, b = 0. The second term has complete information regarding the

relationship of the output v to the input combination a = 0, b = 1, but has no information

describing the relationship with respect to z. This is a partial information term. The last

two terms have no information at all. In this example the las. three terms would form a

4-11

collection of terms that yield effective vectors. The last two terms form a class of terms

that are least informative, and therefore yield vectors that will provide greater information

once applied. Both are considered optimal.

In general, as more and more information is gained the list of candidates will reduce

to two categories: complete information terms and partial information terms. The terms

with complete information are not effective and can be ignored. Of the remaining terms

the term(s) with the least partial information are optimal.

Mathematically, identifying the terms with the least information is a rank ordering

task. The first step, noted previously, is to expand the left-hand-side of equation (4.22)

with respect to the input variables. Since this does not change the function it remains

set equal to zero. The second step is to complement this equation, which results in the

expanded function set equal to one. The new equation is

O'(,z) = 1. (4.28)

From the example

a'b'(vz') + a'b(v) + ab'(1) + ab(1) = 1. (4.29)

Notice that the single output step of disjunctively eliminating the output has been

skipped. The purpose of this step is to isolate the terms that have no output information.

Given varying degrees of information this step could be detrimental. Consider the situation

in which there are no terms that contain no information relative to the circuit outputs, but

partial information terms do exist. The partial information terms, which yield the only

effective vectors, will be lost and the diagnostic system will terminate under the assumption

that there are no further effective test vectors.

The next step in arriving at a rank ordering of the terms that are candidates for

test vector generation is to expand the resulting output terms, which are those inside

parentheses in equation (4.29), with respect to the output variables. Each expansion will

have a number associated with it that corresponds to the number of terms resulting from

4-12

expansion. The following list relates each input combination with the number of expansions

described.

Sa'b'- 1

* a'b - 2

* ab' - 4

* ab - 4

In general, the vector or vectors associated with the largest value represents the

optimal effective vector or group of optimal effective vectors.

4-13

V. Implementation of Cerny-based Diagnostic System

This chapter describes the implementation of the extensions made to Cerny's process

for generating test vectors. The mathematical basis for this implementation is detailed in

Chapter three. The diagnostic system described here extends Cerny's work to allow the

analysis of the results from each vector application. Another extension allows the testing

of sequential circuits. The system is automated, where Cerny's original work is not.

Figure 5.1 shows the opening menu of the diagnostic system as seen by the user.

Six options are provided for testing a circuit. In choosing one of the six testing options

the user specifies the type of circuit being tested (combinational of sequential) as well as

the class of fault being tested for (single stuck-at fault, bridge fault or multiple stuck-at

fault). Regardless of the type of circuit being diagnosed or the targeted fault class, each

diagnostic routine has the same underlying architecture. Each routine is decomposed into

three functions: an input function, a vector generation function and an analysis function.

Software System Architecture

The three functions that form the architecture of each diagnostic routine are illus-

trated in Figure 5.2 along with the inputs and outputs for each function. The following

subsections describe each function.

Input Function. The input function is exactly the same for each diagnostic rou-

tine option and is actually completed before the branch to a specific option takes place.

The input format required is the same for all routines, as are the data elements that are

extracted from the input and passed on to the vector generation function.

The input format requires a data file containing a system of Boolean equations that

use the following set of AND, OR, XOR and NOT operators, respectively: *, +, !, '

(18:100-103). The operations NAND, NOR and XNOR can be represented using the first

three operators combined with the NOT operator. The use of juxtaposition, with respect

to a set of operands, in place of the AND operator is allowed (ie., A * B can be represented

as AB).

5-1

ENTER NUMERICAL CHOICE OF DIAGNOSTIC ROUTINE:

1. SINGLE SA FAULT ANALYSIS - COMBINATIONAL CKT

2. SINGLE SA FAULT ANALYSIS - SEQUENTIAL CKT

3. BRIDGE FAULT ANALYSIS - COMBINATIONAL CKT

4. BRIDGE FAULT ANALYSIS - SEQUENTIAL CKT

5. MULTIPLE SA FAULT ANALYSIS - COMBINATIONAL CKT

6. MULTIPLE SA FAULT ANALYSIS - SEQUENTIAL CKT

7. EXIT

**** Enter the filename of your input file ****

Enter the input filename - te.ckt

Figure 5.1. Diagnostic System Menu

The system of equations includes a subcircuit equation for each gate in the circuit.

The subcircuit equations, which relate the contribution of each logic gate to the overall

circuit function, are used to develop the circuit characteristic equation (CCE) detailed

in Chapter three. In addition to the subcircuit equations an output equation must be

included for each output in the circuit. Each output equation relates a given output to

the primary inputs of the circuit. The output equations are used to develop the fault-free

circuit equation (FCE) detailed in Chapter three. A circuit with two outputs and three

gates, such as the one in Figure 5.3, would have the following five equations in the input

file:

= (5.1)

Z2 = YX I1

Y = X2 + X3

5-2

INPUT FILE

INPUT FUNCTION

INTERNAL NODES INTERMEDIATE FORMAT1
OUTPUT NODES INTERMEDIATE FORMAT2
INPUT NODES

VECTOR

GENERATION
FUNCTION

I/O EXPERIMENT RESULT

ANALYSIS
FUNCTION

Figure 5.2. Architecture of Diagnostic Routines

5-3

x 1 zi

x 2 z2

x 3

Figure 5.3. Example Circuit

z2= (X2 +x3).l.XI

The first three equations are subcircuit equations; the last two are output equations. Notice

that all fanout nodes must be explicitly represented in each gate equation that the given

fanout feeds (xl is a fanout node). Also notice that a subcircuit equation must b- present

for each gate regardless of its possible repetition in the data file.

The software prompts the user for the filename of the file containing the circuit

descriptions (last line of Figure 5.1). After being read from the external file the input is

used to generate several data elements that are passed to the vector generation function.

Two "intermediate formats" are assembled. The intermediate format is a data structure

that was first developed by Kainec (18:135) to maintain information about the structure

and content of a given circuit. The first intermediate format constructed here contains the

subcircuit equations described above. The second contains the output equations. For the

example circuit of 5.3 the following intermediate format structures represent the subcircuit

and output equations, respectively:

5-4

((EQ Zi (NOT XI)) (EQ Z2 (* X1 Y)) (EQ Y (* X2 X3))),

((EQ Z1 (NOT X1)) (EQ Z2 (* XI (+ X2 X3)))).

These data structures form lists that are consistent with Scheme syntax rules and order

the necessary information in a way that simplifies manipulation.

In addition to the intermediate format structures, lists of the circuit's input variables,

internal variables and output variables are generated. All lists are passed to the vector

generation function.

Vector Generation Function. Though the vector generation function is accom-

plished by each type of diagnostic routine, the actual process varies depending on the

type of fault and type of circuit. In this subsection the variations among the types of

faults are discussed first, followed by the differences that exist when testing sequential, as

opposed to combinational, circuits. The figures shown in this subsection refering to the

fault-type differences correspond to the circuit in Figure 5.3. Those figures associated with

the sequential circuit discussion refer to the circuit in Figure 5.7

As shown in Chapter three, the algorithm is slightly different when considering the

three types of faults to be diagnosed (single stuck-at, bridge and multiple stuck-at faults).

Therefore the implementation of the vector generation function differs among the six rou-

tines accordingly.

Single stuck-at fault diagnosis requires that one variable, identifying the suspected

faulty node, be cut and replaced (by a "test" variable) when generating the CCE using

the first intermediate format. The variable identifying the suspected faulty line is specified

by the user following a prompt to the terminal screen, as shown in the first two lines of

Figure 5.4. The CCE is combined with the FCE developed from the output equations from

the second intermediate format, and the result is manipulated to get the output character-

istic equation (OCE). The output characteristic function in this equation is complemented

and set equal to one. The resulting equation, which we will call a modified OCE, is used

to get the single stuck-at fault test vectors by replacing the test variable with logic one or

5-5

ENER THE VARIABLE THAT LABELS TILE SUSPECTED FAULTY (1)

LINE:

y (2)

APPLY THE FOLLOWING VECTOR TO TEST A STUCK-AT-ZERO (3)
CONDITION ON THE SUSPECTED FAULTY LINE:

X3 = 1 (4)

X - (,5)

X2 = 1 (6)

INPUT TILE RESULT FROM OUTPUT Z1 - 0 OR 1: (7)
0 (8)
INPUT TILE RESULT FROM OUTPUT Z2 - 0 OR 1: (9)
1(10)

APPLY TIL'E FOLLOWING VECTOR TO TEST A STUCK-AT-ONE (11)
(ONDITION ON THE SUSPECTED FAULTY LINE:

Xl = 1 (12)

X2 = 0 (13)

X3 - o (1

I.NPUT THE RESULT FROM OUTPUT ZI - 0 OR 1: (15)
) (16)
INPUT THE RESULT FROM OUTPUT Z2 - 0 OR 1: (17)
o (18)

LINE Y IS NORMAL. (19)

WOULD YOU LIKE TO RUN A SINGLE FAULT TEST ON ANOTHER (20)
NODE IN THE CIRCUIT?
TYPE v(rtn) OR n(rtn).
n (21)

Figure 5.4. Example Single Stuck-at Fault Test

5-6

zero (for stuck-at-one or stuck-at-zero tests respectively). The logic values are automat-

ically replaced by the software. By replacing the test variable with the logic value zero

in the modified OCE the set of vectors capable of detecting a stuck-at-zero condition are

generated. One of these vectors is provided to the user for application (lines 3 throudi-

6 of Figure 5.4. If application of the vector proves that the node is indeed stuck-at-zero,

then testing stops and the node is reported as being stuck-at-zero. If not then the vectors

capable of detecting the node stuck-at-one are generated by replacement of the logic value

one. One is provided to the user for application (lines 11 through 14 of Figure 5.4).

Bridge faul't diagnosis cuts and replaces two nodes, corresponding to the lines sus-

pected to be bridged. The user is prompted for the variables labeling the suspected faulty

lines (lines 1 through 3, Figure 5.5). Vectors are generated from an equation that com-

bines two versions of the OCE. To be bridged the suspected lines must be simultaneously

equal to zero or equal to one. This is represented in an equation containing a version of

the OCE for the lines replaced with zeros and a version with the lines replaced by ones.

The resulting equation is then solved to get the vectors capable of detecting the specified

bridged condition. One vector is presented to the user for application (lires 4 through 7,

Figure 5.5).

Multiple stuck-at diagnosis cuts and replaces n variables, where n is the number of

variables suspected to be faulty. The routine prompts the user for the suspected faulty

lines (lines 1 through 5, Figure 5.6). Logic values that are used for replacement in multiple

fault diagnosis are specifically designated by the user via prompts to the terminal screen

(lincs 6 thro'igh 9, Figure 5.6). The logic values provided identify the suspected stuck-at

values. The values are substituted into the equation containing the OCE for the n test

variables. Solution of the resulting equat:-)n leads to the identification of vectors capable

of detecting the exact fault situation proposed by the user. One vector is provided to the

user (lines 10 through 13, Figure 5.6).

There are situtations when no possible vectors exist for a given specified test in each

of the categories. When this occurs a message to that effect is sent to the terminal screen.

All routines offer the user the opportunity to run the same routine on the same circuit for

a different suspected fa , ltv node.

;-5-7

ENTE,11 THE VARIABLES THAT LABEL THE SUSPECTED (1)
FAULTY LINES. ENTRIES SHOULD BE MADE ONE AT A
TIME WITH (rtn) TYPED BETWEEN EACH ENTRY.

xl (2)

y (3)

APPLY THE FOLLOWING VECTOR TO TEST A FAULT CONDITION (4)
ON THE SUSPECTED FAULTY LINES:

X1 = 1 (5)

X3 = 0 (6)

X2 = 0 (7)

INPUT THE RESULT FROM OUTPUT Zi - 0 OR 1: (8)
0 (9)
INPUT THE RESULT FROM OUTPUT Z2 - 0 OR 1: (10)
1 (11)

LINES X1 AND Y ARE BRIDGED. (12)

WOULD YOU LIKE TO RUN A BRIDGE FAULT TEST ON ANOTHER (13)
SET OF NODES IN THE CIRCUIT?
TYPE y(rtn) OR n(rtn).
n (14)

Figure 5.5. Example Bridge Fault Test

5-8

ENTER THE NUMBER OF LINES SUSPECTED TO BE FAULTY. (1)
FOLLOW THE RESPONSE WITH (rtn):

2 (2)

ENTER THE VAPIABLES THAT LABEL TIlE SUSPECTED (3)
FAULTY LINES. ENTRIES SHOULD BE MADE ONE AT A
TIME WITH (rtn) TYPED BETWEEN EACH ENTRY.

xl (4)

x3 (5)

ENTER THE SUSPECTED FAULT VALUE FOR VARIABLE X1: (6)
o (7)
ENTER THE SUSPECTED FAULT VALUE FOR VARIABLE X3: (8)
1 (9)

APPLY THE FOLLOWING VECTOR TO TEST A FAULT CONDITION (10)
ON THE SUSPECTED FAULTY LINES:

X3 = 1 (11)

X2 = 1 (12)

X1 = 1 (13)

INPUT THE RESULT FROM OUTPUT Z1 - 0 OR 1: (14)
o (15)
INPUT THE RESULT FROM OUTPUT Z2 - 0 OR 1: (16)
1 (17)

THE FOLLOWING LINES: X1 X3 ARE NOT STUCK AT THE (18)
SUSPECTED VALUES.

WOULD YOU LIKE TO RUN A MULTIPLE FAULT TEST ON
ANOTHER SET OF NODES IN THE CIRCUIT?
TYPE y(rtn) OR n(rtn).
n (20)

Figure 5.6. Example Multiple Stuck-at Fault Test

5-9

CP

q2q1

q21 q2

q1' q2'

q1

Figure 5.7. Example Sequential Circuit

5-10

To this point only combinational vector generation has been addressed. In the case of

a sequential diagnostic routine (regardless of fault type), vector generation occurs in two

stages. The first stage generates the modified OCE exactly the same way as in the combina-

tional case. The modified OCE is the equation that includes the complemented version(s)

of the OCE. It is this equation that is used to get vectors after replacement of logic values

for the test variable(s). For sequential circuits, however, this equation will inc1'_'2e the

memory variables of the circuit because they have been converted to primary inputs dur-

ing flattening of the circuit (explained in Chapter 3). To reiterate, the memory variables

represent the current state of the memory elements contained in the circuit, and therefore

the current state of the sequential circuit. The user is prompted for the identities, current

values, and values upon circuit reset of these nodes (lines 3 through 14, Figure 5.8). In the

second stage the current values of these elements are substituted into the equation from

stage one. The substitution should result in a minterm that is then set equal to one to yield

a test vector. If it does not then the reset values are subtituted into the modified OCE

(the same equation that the first values were substituted into). If this process results in a

test vector then the user is directed to reset the circuit. The resulting vector is provided

to the user for application.

The output of the vector generation function is a term (or terms if multiple outputs

are present in the circuit) that combines the vector applied with the result of application

(reference Chapter three discussion regarding this combination). Each of the figures rep-

resenting output to the user show the prompts to the user to input the resulting outputs

following vector application. The following terms could result from the application of the

stuck-at-zero vector listed in Figure 5.4:

X1 X2 X3 ZI

X1 X2 X3 Z2'

These terms indicate that both z, and z2 were read as zero when the vector was applied.

The result (or results as the case may be) is passed on to the analysis function to determine

5-11

ENTER THE VARIABLE THAT LABELS THE SUSPECTED FAULTY (1)

LINE:

X (2)

ENTER THE STATE VARIABLES OF THE CIRCUIT. THESE ARE (3)
THE VARIABLES THAT LABEL THE OUTPUTS OF SEQUENTIAL
ELEMENTS BEFORE FLATTENING. ENTER THE VARIABLES ONE
AT A TIME FOLLOWED BY (rtn). ENTER "O"(rtn) WHEN
DONE.
q1 (4)

q2 (5)

0
(6)

ENTER THE CURRENT VALUE OF STATE VARIABLE QL. TYPE (7)
0 or 1 AND (rtn):
0 (8)
ENTER THE CURRENT VALUE OF STATE VARIABLE Q2. TYPE (9)
0 or 1 AND (rtn):
1 (10)

ENTER THE VALUE OF STATE VARIABLE Q1 WHEN THE CIRCUIT (11)
IS RESET.
0 or 1 AND (rtn):
0 (12)
ENTER THE VALUE OF STATE VARIABLE Q2 WHEN THE CIRCUIT (13)
IS RESET.
0 or 1 AND (rtn):
0 (14)

Figure 5.8. Example Sequential Circuit Single SA Fault Test

5-12

APPLY THE FOLLOWING VECTOR TO TEST A STUCK-AT-ZERO (15)

CONDITION ON THE SUSPECTED FAULTY LINE:

Xl = 1 (16)

INPUf THE RESULT FROM OUTPUT ZI - 0 OR 1: (17)
o (18)
INPUT THE RESULT FROM OUTPUT QIN - 0 OR 1: (19)
0 (20)
INPUT THE RESULT FROM OUTPUT Q2N - 0 OR 1: (21)
1 (22)

LINE X1 IS STUCK-AT-ZERO. (23)

WOULD YOU LIKE TO RUN A SINGLE F4ULT TEST ON ANOTHER (24)
NODE IN THE CIRCUIT?
TYPE n(rtn) OR y(rtn).
n (25)

Figure 5.9. Example Sequential Circuit Single SA Fault Test, cont.

5-13

if a fault is presnt.

Analysis. Analysis compares a test rosult to the overall circuit equations to see if

the result is logically included in the equations. Comparisons are individually made only

with each equation that includes an output accessible by the node being diagnosed. In the

case of sequential circuits the original equations must first be initialized with the values

that represent the present state of the circuit prior to application.

Results of analysis that find that a term is not logically included are reported as faults,

according to the type of test conducted (see Chapter three, Analysis of Input/Output

Results).

Results

The software routines described in this chapter have been tested for accuracy and

speed of operation on several circuits. Though development was done on an IBM-compatible

computer (XT clone), testing was accomplished on a Sun-4 workstation.

The test for accuracy included two areas: generation of a correct test vector, and

the correct diagnosis of a circuit. Considering the first area, if a vector was generated it

was applied to the circuit in question (on paper) to insure that the suspected faulty node

was excited correctly (0 if testing a stuck-at-one condition, 1 if stuck-at-zero) and also

to insure that a path was sensitized from the node to a primary output. If a vector was

not generated the circuit was reviewed to verify that there was no apparent test for the

suspected fault. The second area, testing for correct diagnosis, verified that the results

generated by the software were consistent with the results read from the outputs after the

vector was applied.

The test for speed was done to determine the relative time it takes for the software

to diagnose basic circuits (six to eight gates).

The following two subsections review the results for the two testing areas. The

first subsection addresses the combinational diagnostic routines, the second discusses the

sequential routines.

5-1,4

Results for Combinational Routines. In all test cases the diagnostic routines

correctly generated test vectors and diagnostic results. For single stuck-at fault diagnosis

there were no circuits that resulted in a "no test possible" message. This message is

generated when no possible test exists for the specified fault condition. Typically most

diagnostic sessions for bridge faults produce test vectors capable of detecting the specified

faults. A noticeable failure to generate a bridge fault test happened with a particular 4:1

multiplexer. When any two of the inputs to be multiplexed were specified as fault nodes

the routine failed to generate a test. The attempt to sensitize a path to the output for

any two inputs involves setting the select inputs on the multiplexer to mutually-exclusive

values. Of course this is the way the multiplexer operates but it hinders the capability

to generate a bridge fault test using this software. Multiple fault tests reliably generate

test vectors up to a point. As expected, when four or more nodes are suspected as being

faulty it becomes harder and harder to generate a test for their particular configuration of

suspected fault values.

For the test to evaluate time of operation, most combinational tests on circuits with

ten or fewer gates ran in relatively "real time". By this I mean that the diagnostic process

is continuous from a human's perspective. All user inputs are immediately followed by a

response and appropriate prompt by the software for the next user input. The time to

complete a diagnostic session is largely dependent on the time it takes a user to apply a

test vector and report the results. The exceptions for combinational circuits are multiple

output circuits with three or more nodes specified as being faulty. In these cases it takes

two or three seconds to generate a test vector. For all combinational circuit tests circuits

with 10 to 15 gates slows the response time to three to five seconds for vector generation.

All in all the software runs very fast.

Results for Sequential Circuits. The sequential circuit tests were also successful

from the standpoint of generating correct test vectors and providing accurate test results.

On the whole the technique for generating vectors was successful given that only two circuit

states were available to do so. Tests were generated about seventy percent of the time.

The reset state that was specified most often cleared all sequential elements to zero. This

5-15

apparently is a good state to start from when testing.

Since the circuits are first converted to combinational circuits by the user the run

times are very similar to the combinational cases described above. In other words the

response times are the same. The time for overall testing is increased because more user

inputs are required for sequential circuit tests.

5-16

VI. Implementation of Extensions to Kainec Diagnostic System

Given that Kainec's diagnostic system is already automated the implementation of

the extensions uses the original software architecture as a basis. Changes are made to

the original modules that form the architecture to incorporate the extension for testing

multiple output circuits.

Original Architecture

The original architecture consists of an input module, an equation generation module,

a tester module and an interpretation module (18:97). Figure 6.1 shows the four modules

and the data passed bet.- n them.

Input Module. Kainec develops the "intermediate format" data structure to main-

tain the system of Boolean equations that is used to describe a circuit (18:98-103). The

system of equations is provided by the user in an external data file. Equation operators for

AND and OR operations are reprt:cented with convcntional symbols (*, +). Juxtaposition

can be used to replace the AND operatoi. The NOT operator is '. The XOR operator is !.

Equation Generation Module. This module accepts the intermediate format

from the input module and uses it to generate the charateristic equation developed in

Chapter 4 and shown again below (18:109-111).

*(zYZ)= 0. (6.1)

In generating the characteristic equation checkpoint variables, y, are combined with

the system of equations from the intermediate format. The checkpoint variables are added

according to the checkpoint model and circuit structure. As described before the checkpoint

model designates checkpoints in the circuit at fanout branches of nodes that fan out, and

nodes of primary inputs that do not fan out. The checkpoint model equations (4.1) and

(4.2) introduce the checkpoint variables to the characteristic equation.

6-1

INPUT FILE

INPUT MODULE

INTERMEDIArE FORMAT

EQUATION
GENERATION

MODULE

CHAR EQUATION INPUTS

CHECKPOINT VARS OUTPUTS

TESTER MODULE

FINAL CHAR EQUATION INTERMEDIATE FORMAT

CHECKPOINT VARS OUTPUTS

INTERPRETATION
MODULE

Figure 6.1. Original Kainec Diagnostic System Architecture

6-2

Also generated, in addition to the characteristic equation, are a list of the circuit's

inputs, checkpoint variables and output. These four data elements are then passed on to

the tester module.

Tester Module. The tester module uses the characteristic equation and associated

lists from the equation generation module to generate test vectors (1S:112-114). As vectors

are generated and applied the results of each input/output experiment are added to the

characteristic equation to support the generation of successive vectors. This iterative

process continues until all possible information is obtained regarding the function of the

circuit.

The main data element that is generated and passed to the interpreter module is

the final characteristic equation. The final characteristic equation contains all of the in-

formation relevant to determining actual circuit function and supporting the diagnosis of

existing faults. Additionally the number of tests conducted is passed to the interpretation

module to provide a measure of efficiency for the diagnostic system.

Interpretation Module. The interpretation module (18:115-120) performs three

functions. The first function generates the actual function of the tested circuit using the

final characteristic equation along with circuit checkpoint variables and the output vairable.

The second function uses the final characteristic equation and the output variable to deduce

the definite and possible faults existing in the circuit. The third function generates metrics

to support determination of system performance using the inputs and number of tests

conducted. A performance ratio is calculated that compares the number of tests conducted

to the number of tests possible.

Changes for Multiple Outputs

The two modules that are changed to accommodate testing of multiple output cricuits

are the tester module and the interpretation module. Note that the changes do not alter

the system's capability to diagnose faults in single output circuits.

6-3

w Doy

z
x

Figure 6.2. Example Multiple Output Circuit

Tester Module Changes. Changes to the tester module incorporate the capability

to choose an optimum vector from a group of effective vectors. The process begins with

equation (4.8), repeated below with one change; there is now a vector of outputs (z) as

opposed to a single output. This equation is the result of manipulating equation (6.1) to

arrive at an equation that is a function of only circuit inputs and outputs.

O(z_, Z) = 0. (6.2)

Software routinee added to the tester itnodule expand the complement of this equation

with respect to the input variables. The resulting expansion isolates all possible input

combinations together with the information that each combination has with respect to the

outputs. Each of these groups of information is then expanded by each of the outputs to

determine which terms have the least amount of information concerning the state of the

outputs in the presence of the respective inputs. The inpat vector terms associated with

the greatest number of output expansions form an class of "best" effective vectors.

6-4

The Input Equation is: 0 = 0
The Suggested Input is:

V =0

X=0

If the output was 0, type 0 (rtn), else tp 1 and
(rtn).

Enter the Result from Output Y- -

Processing....

Enter the Result from Output Z- - 0

Figure 6.3. Vector Application Prompt to User

The tester module is a'so altered to enable processing of multiple output results from

the application of a given test vector. Figure 6.3 shows the screen output that the user sees

when prompted to apply a particular vector. Notice the prompts to the user for reporting

each of the results from the multiple outputs of the circuit shown in Figure 6.2 folowing

application. All terms, which are constructed from an applied vector and its associated

output results, are combined into a single function. This single function is then added to

the characteristic equation. Previously with one output only one result was added to the

characteristic equation.

Interpretation Module Changes. Changes to the interpretation module focus on

extending existing functions to account for multiple circuit equations that result from hav-

ing multiple outputs. The interpretation module derives the actual function and designed

function for a given circuit using the final characteristic equation and the intermediate

format, respectively. When there are several output for a given circuit several functions

6-5

The function(s) that the circuit was designed to perform
is:

Y= IV'

The function(s) that the circuit is performing is:

Y % V'
Z= W X

The actual circuit IS equivalent to the designed circuit.

Figure 6.4. Report of Results to User

exist corresponding to each output. The existing routines that are used to extract a single

function are e::ted~d to extract multiple functions, when they exist, from the final char

acteristic equation and intermediate format. Figure 6.4 shows the report that the user ses

upon completion of testing. Notice the two equations describing the designed function of

the circuit.

Another function performed by the interpretation module is the comparison of actual

and designed circuit functions. This process is extended to account for the possibility of

having several functions in each category. All of the actual functions are combined using

Boolean reasoning, as are the designed functions. The two resulting combined functions

are then tested for equality.

aesults

The additions made to Kainec's diagnostic system to allow the diagnosis of multiple

output circuits have been tested for accuracy and speed of operation (relative to the original

system). Testing was done on a Sun-4 workstation.

6-6

The test for accuracy was done to verify two things: the choice of an optimal vector

from a set of effective test vectors, and correct diagnosis of circuits (both single and multiple

output).

The test for speed was done to provide an estimate of the overhead, if any, that the

extension adds to the original sofrware.

Accuracy. The extension works as planned. In all test cases the added software

chooses an optimal vector. This was verified by running the software up to the point

where vectors are generated. The effective vectors were dumped to the screen along with

the choice of an optimal vector.

The system was then exercised as a whole and compared manually (on paper) to

verify proper operation.

Speed. The original and extended software systems were run on single output cir-

cuits to compare speed of operation. There is no noticeable difference in speed of operation

between the two.

6-7

V!I. Conclusions and Recommendations

This chapter discusses the conclusions and recommendations resulting from this the-

sis. The first section summarizes the work that has been done. The second section assesses

the contributions made in accomplishing the work. The last section identifies recommen-

dations for future research related to this thesis.

Summary

The goal of this thesis was to further research in the area of Boolean-based digi-

tal circuit diagnosis. Extensions were made to two research efforts: Cerny's process for

generating test vectors (7), and Kainec's diagnostic system(18).

Summary of Extensions to Cerny Research. Cerny developed a process to

generate test vectors that are capable of diagnosing faults in combinational circuits. The

process generates vectors to test nodes in a circuit for single stuck-at, multiple stuck-at,

and bridge faults. Regardless of the type of fault, two circuit descriptions are formed and

combined to yield an equation capable of producing test vectors. The circuit descriptions

that are combined are the circuit characteristic equation (CCE) and the fault-free charac-

teristic equation (FCE). The CCE describes a given circuit at the gate level, while isolating

the identity of a suspected faulty node(s) which is specified by the user of the process. The

FCE describes the circuit in terms of its primary inputs and outputs. The CCE is com-

bined with the FCE to get the output characteristic equation (OCE). The OCE is then

manipulated to produce an equation that yields vectors capable of detecting a fault on the

specified node(s). Manipulation of the OCE is done in different ways, depending on the

type of fault being diagnosed. The resulting equation has a function of the primary inputs

set equal to one. Any of the minterms of this function can be set equal to one to yield a

test vector.

Two extensions were made to Cerny's original process for generating vectors. The

first extension adds the capability to automatically determine the presence or absence of

the suspected fault, based on the results gained from applying the vector generated by

7-1

Cerny's process. To do this a term(s) is formed using two items: the minterm used to get

the vector, and a representation of the value of the output that resulted from applying the

vector. A term is formed for each output of the circuit (ie., minterm xlx' and outputs
a 0would yield the terms: xxZ and xIx' z 2). Each term is then comparedIl = I and z2 =2 1 wo l2il-ie em :x x ,

to its associated output equation. An output equation is a partial circuit description that

includes a particular output and the primary inputs that feed that output. The comparison

of the term(s) with the output equation(s) identifies the presence or absence of a fault.

The second extension to Cerny's work implements a diagnostic system for sequen-

tial circuits. Cerny's process is used to generate test vectors for a "flattened" sequential

circuit. The flattening process converts a sequential circuit into a combinationa2 circuit.

This is done by the user prior to creating the input file that contains the circuit descrip-

tion. Flattening tae circuit replaces its memory elements with the logic that realizes the

chara-teristic equattions of those memory elements. For example, a JK flip-flop is replaced

by the logic functicr jq' + k'q, where q is the variable representing the flip-flops current

state. The output of this logic would be q,, which represents the next state of the flip-flop.

In taking this approach flattening also cuts the ;eedback path in the circuit which turns

the variables representing the current state of the circuit into primary inputs. Cutting this

path also creates additional outputs which are the next state variables of the circuit.

The process of generating test vectors using a flattened circuit identifies the values

that the current state variables (one for each flip-flop) must be in order to sensitize a path

from the site of the suspected fault to an output. Several vectors are typically generated.

Each vector will be associated with one of the 2' specific combinations of current state

variables (where n is the number of memory elements). The process that was developed

checks the set of generated vectors for two of the possible specific combinations of current

state variables. The first possibility is the current state of the elements as determined by

the user after probing the circuit. The current values of the current state variables are

provided by the user and then are substituted into the equation that yields test vectors.

If one of the vectors is associated with the existing state of the circuit then it will be

generated. If not then the second alternative combination is tried. The second alternative

is the state of the circuit after it has been reset. The user is asked for the values of the

7-2

current state variables when the circuit is reset. If the substitution of these values results

in a vector then the user is directed to reset the circuit and apply this vector.

Analysis of the test results is conducted much the same way as in the combinational

circuit case. With sequcntial circuits, however, the formation and comparison of terms also

uses the new outputs that represent the next state of the memory elements. The outputs

of the elements are probed after testing to eel these values. Also, pT:or tu iie cuimparison

that determines the presence or absence of a fault, the output equations for these next

state variables must be initialized with the values that the current state variables held

prior to testing.

Cerny's work was not automated. Following the mathematical derivation of the

extensions the entire diagnostic system was automated resulting in a program with six

separate routines for diagnosing three types of faults (single stuck-at, bridge and multiple

stuck-at) in two types of circuits (combinational and sequential).

An alternative routine for generating test vectors was also explored.

Summary of Extension to Kainec Research. Kainec developed an automated

diagnostic system for diagnosing multiple faults in combinational circuits with a single

output. The approach derives a characteristic equation which is used to generated test

vectors. The process goes through several iterations to diagnose all possible stuck-at faults

in a circuit. At each iteration the characteristic equation generates a vector that yields

information about the circuit output that was not previously known. This vector is applied

by the user and the resulting output value is read back into the diagnostic system. This

result is used to update the characteristic equation and therefore supports the next iteration

for generating a test vector. After all possible information is gained from applying test

vectors the last characteristic equation (which is the result of updating the equation used

in the last iteration of vector generation with the result of applying the last vector) is

manipulated to derive the states of the circuit's internal nodes. Determining the states of

those nodes leads to the diagnosis of the circuit's faults. A comparison is also made to

determine if the circuit's designed function matches the actual function.

The extension that was made to the Kainec system incorporates the capability to

7-3

diagnose faults in multiple output circuits. The appropriate software modules have been

changed to account for m,,ltinpl output equations. For example, the user is prompted

to enter results from each output of a multiple output circuit after applying a particular

vector. However, the extension was made primarily to take advantage of the fact that

multiple output circuits offer the capability to choose an optimum test vector from a set

of generated vectors. An optimum vector is one that provides the most information about

the circuit outputs when applied. The software routines capable of choosing an optimal

vector at each iteration of generation have been incorporated into the main system.

Assessment of Research.

The extensions accomplished in this thesis offer useful improvements specifically to

the two existing research efforts (Cerny and Kainec) descr'bed, and also to the area of

Boolean-based circuit diagiosis in general.

Extension and automation of the Cerny process created a complete diagnostic system

capable of detecting faults on specified lines in a circuit. The extension for analyzing

the results from applying a particular vector can be used with any of the Boolean-based

methods described in Chapter two. The extension for sequential circuit diagnosis offers a

significant addition to a very limited research area. A significant part of the diagnostic

system is the capability to diagnose bridge faults as opposed to just the classical stuck-at

faults.

Certain limitations exist with the Cerny-based diagnostic system. It is restricted to

diagnosing circuits described at the gate level. In diagnosing a particular fault on a line

the system assumes that the fault being diagnosed is the only fault present in the circuit.

This is known as a single fault assumption. It also assumes that if an error is detected

in testing, then the fault that has been specified is the cause of the error. This may not

always be the case. Take for example the test of an AND gale output for a stuck-at-

zero condition. Regardless of the location of the gate in the circuit, an input vector is

produced to generate a one on this output by setting the inputs of the gate to one. This

is known as exciting the suspected fault site. If the node is stuck-at-zero then the output

will not set to one as it would in normal circuit operation and an error is detected. The

7-A

problem is that a stick-at-zero fault on either of the inputs, while the output is normal,

will cause the same error. The point is that the svtem actually isolates faults to a class

of possible faulty nodes. A possible improvement to account for this fact is addressed in

the recommendations bectiun.

The extension made to Kainec's diagnostic system significantly expands its diagnostic

capability to a larger group of circuits. The extension is very useful since integrated circuits

typically have multiple outputs. The extension does not change the systems' capability to

diagnose circuits with a single output.

Recommendations

There are a number of possible improvements that can be made that use the work

(lone in this thesis as a starting point. Some of the recommendations address the diagnostic

routines developed here in general. Other recommendations are specific to the individual

extensions that were done.

General hinplovements. In general the routines that were programmed as part

of this thesis were developed with the primary goal of correct operation. The routines are

probably not as optimal as they can be with respect to speed of operation. Analyzing

and reworking the software should lead to significant improvements in the speed in which

circuits are diagnosed.

Another general improvement that could be made concerns the input modules of each

system. The input modules should be changed to accept the user's system of equations

describing the circuit via prompts to the terminal screvi,. Tih,:z, ned:,i',,,A ,ji make

each diagnostic system completely interactive, eliminating the need to construct an external

data file for each circuit to be tested. Another advantage of this improvement is that it

would make the systems more practical for use on large circuits that have been partitioned

to simplify testing. If a user chooses to test one area of a circuit at a time, given access

to internal nodes, he/she can type in the descriptions of these areas as they need to be

tested. The interactive nature of the modification eliminates the need to continually exit

and enter the diagnostic systems to create an input file for the area of the circuit that the

7-5

user decides should be tested next. This improvnierit ,hoild, he iin plernted such that

the user has an option for interactive or external file input so that large circuits that are

to be tested as a whole can be tested without tediously entering them inteiactivelv.

Research should be continued in the area of non-classical fault diagnosis: specifically

in the area of diagnosing transistor faults in very large scale integration (VLSI) circuits. As

was noted in Chapter one, faults in VLSI circuits are t,'c-.lv stuck-oTP,, and st,! ck-Uc-d

transistor faults. With the widespread use of VLSI technology the autromated di a gtesis

of these faults becomes more and more necessary. Jain and Agrawal hao- formalized a

technique for converting stuck-at faults to transistor faults and vice vr,a (15:6.5). Ihis

technique can be used with the stuck-at faulIt routinc -,velopod here toI ,pproali the task

of testing VLSI circuits.

Specific Improvements. Several spocific modifications to the (ernyv xtensions

can be done. The first one relates to the second general no(dification described above. To

make this second modification useful for the ('ernv-based routines they need to be changd

to have an option to preprocess and save input information. Preproce-sitng woiild consrtvici

lie necessary equations and lists that are generated using a given circuit description (-CE.

(CE. inputs, outputs etc.) and store this information, along with iie desription, in1 setC-

ondarv storage. Kainec's original system includes this option. In this way the circuit

description that is interactively entered by the user can be saved for use after the system

is ,xited.

The second recommended modification to the Cerny work is that it be changed to

include an option for diagnosing all possible single stuck-at faults in a circuit. This change

would greatly improve its usefulness to a user that has no idea where the fault may be.

and wishes to test the entire circuit without specifying and running a test on each node in

the circuit. Fault simulation is a process that allows a user to determine the fauit coverage

that a particular test vector has. Techniquees exist (parallel, deductive and concurrent

fault simulation) that can deduce which stuck-at faults are detectable given a certain test

vector. The Cerny-based diagnostic system can be programmed to randomly choose a

node, generate a test for that node, and use fault simulation to qsee what other faults are

7-6

(letect-.O oy applying the vector. Fault s that hav, al rfadx' been covvrvd can be iterativelyj

el;ni nated from the list of all pos i he faults utitl t e- vertors hiave beeni generated andl

applied to cover all faults, or until a fault has heen (let ected (wh ich ever come~fS first). Ilis

process wonidd also add ress the li mi tat ion decsri hed abhove thItat con cerns the fautlt isolation

capab ilIity of the syst em. In this wVay theI specific menu hebrs of a cla-ss of faul ts Ii hat may h iave

resin Itvd in a (det ect ed error can be ident i fiet to thle user. Tis tech ii qie coulId he iise~d for

bridge and mulhltile stuck-at fatult diagnosis also, but tiav renuiire too much coiptitat iOn

for testing for these faults.

7-7

A ippendix A. Fundamentals of Boolean Algebra

Definitions

An alarelra is characterized by thbree components:

1. A >ot, calledl a carricr.

'). ()pf rat ion., (defi ned on the carrier, arid

3. Dist inct members of the carrier which are called constants of thle a I gebra .)

Iii aidd(it ion to t hese comnponents. an algebra has associated axions.. A c~u.-t d ii1ru

IN mIS governed by the Law of S)ubstitution which states that Two epfsoi r

t4) h- ,ial If mwe c-an be replaced bY the o-ther (13:5-5).

A\ Jool&an 0 ui 1ibra is a closed algebraic system denoted by tie i11ii i i ileh

< B, .1

VV$

R 1, th Iliearrier of the algebra.

* 111d1 - are hlina ry operations defined on B. and

* (0 md I are, t lie constants of B.

Th lie perator -is called AND. An expression of the form a -b is called a cmoi!().

Flie, operato- + is called OR. An expression of the formi a + b) is called adiucu.

1Ihe * :sYmbol is often used in lieu of the - symnbol. .XdditionallY. aI - b may be replar(

I ! lxt aposition ab for siminplici ty.

A*- I

Axioms

A Boolean algebra is based on a set of axioms known as lluntingtorfs PostillateS

(1-I). These axioms are:

1. Commutative Laws. For all a.b E B,

a + b b + a

a -b = b . a. .. 3

2. Distributive Laws. For all a.bc E B.

a + (b. c) = (a + b) • (a + c) (AA)

a • (b + c) = (a. b) + (a. c). (A.5)

3. Identities. For all a E B,

0 + a =a (A.6)

1 • a a. (Ah

0 is the identity for the + operator. I is the identity for the operator.

.1. Complements. For every a E B. there exists an a' E B such that

a+ a' I (A.,)

a a =0. (..9)

The " ' " symbol denotes complementafion. Note that both equations must hold to

prove complementation.

Boolean algebras are governed by the principle of duality by which a given vdlid

expression has an associated valid dual expression. The dual of an expression is fontd b%

interchanging all + and • operators and interchanging identity el(.ments 0 and 1. Note that

A-2

each of the preceding postulates has two expressions; these expressions are duals of ,,chli

other.

The Inclusion Relation

relation, <, is defined as follows. For all a, b E B

a < b <:: a -b' = 0 .1

('2S:8)

The relation < is called the inclusion relation.

Theorems

Theorems which can be proven from the axioms and the definition of the inclusion

rel;ation are:

1. Associativity. For all a, b, c E B,

a+(b+c)= (a+b)+c (A.11)

a. (b. c) (a .b) -c. (.12)

2. Id-rmpotence. For all a E B,

a+ a =a (A.13)

a -a = a. (.14)

3. Boundedness. For all a E B,

a + I = 1 (.X.,-)

a .0 =0. (.\.16)

.1. Absorption. For all a,b E B,

a + (a .b) = a (:k.17)

A-3

a (a + b)= a.

5. Involution. For all a E B,

(a')' a.

6. DeMorgan's Laws. For all a. b E B,

(a + b)' a' b' (.\.20)

(a . b)' = a/ + bf. (.A.21)

7. For all a.b E B,

a + a'.b = a + b (A.22)

a (a' + b)= a b. (A.23)

S. Consensus. For all a, b,c E B,

a .b+ a' .c+ b-c =a .b+a' .c (A.24)

(a + b). (a' + c). (b + c) (a + b). (a' + c). (A.25)

9. Interchange. For all a, b, c E B,

(a.- b) + (a'.- c) =(a + c) • (a' + b) (A.26)

(a + b) . (a' + c) = (a. z) + (a'- b). (A.27)

10. For all a,b E B,

a < a+b (A.28'

a. b < a. (A.29)

(17, 20. 13)

A-4

Properties

Genera! properties of Boolean algebras which can be proven from the postulates and

theorems are:

I.

a =b ' a'.b+a b'=0 .\.30)

a=b a'.b'+a.b= 1. A.3 I

(a' - b + a b') is the exclusive-OR of a and b and is denoted by either (a -7 b) or a

XOR b; (a'.b'+a.b) is the exclusive-NOR of a and b and is denoted be either (a- b)

or a XNOR b.

2.

a=0 & b=0 , a+b=0 (A.32)

a=1 & b=1 ab=1. A.33)

Literals, Terms, and Formulas

A literal is a variable or complemented variable such as a, b, a', b'. A term is a 1. a

literal, or a conjunction of two or more literals in which no two literals involve the same

variable. Examples of terms include ab',ac, and abc'. An alterm is a 0, a literal, or a

disjunction of literals in which no two literals involve the same variable. Examples include

(a + b),(a + c'), and (a + b + c'). (6:2.1-1)(20:225)

The set of Boolean formulas on n symbols x . x, is defined by the following:

1. The elements of B are Boolean formulas, and

2. The symbols xl,. . ., x, are Boolean formulas, and

3. If f and g are Boolean formulas, then so are

(a) f + g,

(b) f g,

(c) f', and

A-5

4. A string is a Boolean formula if and only if it is formed by a finite un inuber ot
applications of the first three rules.

Examples of formulas include x, x'. x + y, (x - (y + s))' + W.

A sum-of-products formula is 0, a single term, or a disjunction of terms. A prodcat-

of-.,ions formula is 1, a single alterm, or a conjunction of alterms. (6:2.1-1)

Functions

An n-variable Boolean function. f : B ' - B, is the mapping associated with an

ii -variable Boolean formula. Rudeann, in his work on Boolean functions and equpations.

ives an informal definition of a Boolean function:

Roughly speaking, a Boolean function (also called Boolean polynomial by cer-
tain authors) is a function with arguments and values in a Boolean algebra B,
such that f can be obtained from variables and constants of B by superpositions
of the basic operations +,., and ' of B. (28:16)

Rudeanu makes a clear distinction between Boolean functions in the general case. and the

spocial case of Boolean functions involving no constants except 0 and 1 which he calls

simple Boolean functions (28:xvi). He states:

In the particular case of the two-element Boolean algebra B2 = {0, 1}, every
function f : B' - B 2 is a simple Boolean function and will be termed a truth
function (also called a "switching function" or "'Boolean function" by switching
theorists ...) (28:xvi)

The switching theorist point of view is taken in this work; however, all axioms, properties,

and theorems discussed in this report hold for Boolean functions in the general case.

Boolean functions may be constructed as follows:

1. For it variables, xl .. , xn, the projection function f : B' - B2 defined by

f(x . xJ) = x, V(x . x,) E B2, i E {l ... n}, (A.34)

A-6

is an n-variable Boolean function.

2. If g,h : B - B 2 are n-variable Boolean functions, then the functions y + h.yh, q iit
g' defined by

(a)
(g + h)(xl.. x) = g(x1 . .. x) + h(x r) .\)

(b)
gh(xi ... x,,) = g(xi.... x,) h(x . . x,)

(c)
g ' . X) = (g(x . x,))' (..37)

V(x, . .x,) E B", are also n-variable Boolean functions.

3. A function is a Boolean function if and only if it is formed by a finite number ()I
applications of the first two rules. (28:17)

Every n-variable Boolean formula maps into a corresponding n-variable Boolean func-

tion. A function, f : Bn - B, is a Boolean function if and only if it can be represented by

a Boolean formula. Moreover, a Boolean function may have any number of corresponding

formulas. Formulas that represent the same function are called equivalent formulas. A

funwtion table or truth table is often used to specify a function.

Example A.1:

Given the two-element Boolean algebra, B = {0, 1}, a truth table for the three-variable

Boolean function f : B' - B 2 corresponding to the Boolean formula xyz + xr'z' + y'z' is

given bv Table A.1:

x y z f(x,y,z)
000 1
001 0
010 1
011 0
100 1
101 0
110 0
111 1

Table A.1. Truth Table for Example A.1

A-7

Boolean Expansion Theorem

The most important functional theorem is the Boolean Expansion Thfortin. It is

stated as follows:

If f is an n-variable Boolean function, then f has the expansions

f(xI,x 2 . xn) = x'lf(OX2,..,X7) + xIf(1,X2 x,) (A.31.)

f(xI-x 2 . ,x,,) = [x' + f(1 ,x2 , .,x,)][x I+ f(0,x2.x)]. ,....1

(4)

Extended Verification Theorem

Another important theorem in Boolean algebra is the Extended Verification Theorem.

It is stated:

Let fg : B n - B be Boolean functions, and assume that the equation f(X) = 0 is

cojisistent. Then the following statements aTe equivalent:

I.- f(A") --0 => g(X) = O,

2. g(X) < f(X) VXE B",

3. g(X) : f(X) VX E {0, 1}

(28:100)

Canonical Forms

It is often desirable to use a restricted class of formula in which any Boolean function

has only one corresponding formula. Formulas in such classes are called canonical forms.

('anonical Boolean forms include the minterm canonical form, the maxterm canonical foirm,

and the Blake canonical form.

Minterm Canonical Form. A minterm is a term in a formula of n variables which

cmtains all variables of the formula either in complemented or uncompleniented form. A

A-S

formula in minterm canonical form is a sum-of-products formula in which all of t he tem.s

are minterms. A minterm canonical form is also called a canonical .urn-of-products for'rn

or full disjunctive normal form (20:225)(13:84).

Example 4,.2:

Given the three-variaLle Boolean function f : B3 - B 2 from Example A.l. the following

formula in minterm canonical form represents tte same function f:

XyZ + X'yz + X'y'z' + Xy'z'. (o. 0)

Often, a shorthand notation is used to represent a minterm. This form is m,. where

i is the decimal integer of the binary code for the minterm. The shorthand notation for

three-variable minterms is given in Table A.2.

Term Binary Code Shorthand Notation
x'y'z' 900 rn0

X/ I Z I() (

x/y z 00 1 MI
x /yz' 0 1 0 M2

xyz 0 11 m3
xy' z' 1 0 0 mJ
xy'z 1 0 1 m5

xyz 1 0 m 6
xyz 1I1 _M7

Table A.2. Shorthand Notation for Minterms

('sing this notation, the formula in Example A.2 can be written as f(x, y, z) =m + 12 +

m, + M7 . This notation can be shortened further to minterm list form. The function

f(x, y, z) is expressed in minterm list form as f(x, y, z) = E m(0,2.4, 7). (13:85)

Maxterm Canonical Form. A maxterm is an alterm in a formula of n variables

which contains all variables of the formula either in complemented or uncomplemented

form. A formula in maxterm canonical form is a product-of-sums formula in which ali of

the alterms are maxterms. A maxterm canonical form is also called a canonical product-of-

A-9

sums form or full conjunctive normal form (20:225)(13:84). Hence, the maxterm canonical

form is analogous to the minterm canonical form where the formula is expressed in prodict-

of-sums form rather than sum-of-products form and terms are replaced by alterms.

Example A.3:

Given the three-variable Boolean function f : B 3 - B 2 from Example A.1. the fo11,v.ilt

formula in product-of-sums form represents the same function f:

(x + z')(x' + y + z')(x' + y' + z) (Al1)

This formula can be transformed to the following formula in maxterm canonical form:

(x + y + z')(x + y' + z')(x' + y + z')(x' + y' + z) (A.42)

As with minterms, a shorthand notation is used to represent maxterms. This form

is Ili, where i is the decimal integer of the binary code for the maxterm. The shorthand

notation for three-variable maxterms is given in Fable A.3. Using this notation, the formula

Alterm Binary Code Shorthand Notation
X+ Y+ Z 000 o
x+y+z' 001. ,11
x + y' +z 010 ml

X+ y'+ z' 0 1 0 M2

X,+y+z 1 10 64X I + y + Z/ 1 0 1 ws
X +"Y1 + z I 1 0 1 16

SI + y/ + z/ 1 1 1 M7

Table A.3. Shorthand Notation for Maxterms

in Example A.3 can be written as f(x, y, z) = ,, 1.11 53.16. This notation can be shortenied

fu rt her to maxterm list form. The function f(x, y, z) is expressed in maxterm list form as

f(x , y.z) = M(1,3,5,6). (13:88)

A-10

:ike Canonical Form. A term p is called an implicant of a Boolean function f

if p < f. When a function f is expressed in sum-of-products form, all terms in the form

are implicants of f. A prime implicant of a Boolean function f is an implicant of f such

that it is no longer an implicant if any of its literals is removed (24). Boolean axioms and

theorems such as consensus and absorption are used to reduce a Boolean formula for a

function to a form which consists of the prime implicants of the function. An application

is minimization, one approach to which is to reduce a Boolean formula to an equivalent

formula which includes the smallest number of prime implicants that still represent the

same function. The impetus for minimization is to represent a Boolean function by a

formula that can be implemented in hardware with the smallest number of components.

See (13. 24, 25) for discussions of Boolean minimization. A prime implicate is the analog

of a prime i- 1;-mt for the product-of-sums form.

Example A.4.

The only term in the n-variable Boolean formula f given by

xyz + x'Yz' + x'y'z' + xy'z' (A.,13)

that is a prime implicant of f is xyz. The formula may be transformed to an equivalent

formula consisting of only prime implicants by application of Boolean axioms and theorems.

An equivalent formula which consists only of prime implicant. is:

xyz + y'z--xz. (A--)

In the process of reducing a given formula to prime implicants, superfluous terms are

often generated. A term p is superfluous in a sum-of-products formula, p + q, if p + q is

equivalent to the formula q (24:522). A literal of a term in a sum-of-products formula is

.uperfluous if it can be removed without changing the formula to a non-equivalent formulla.

Quine called a "formula irredundant if it has no superfluous clauses and none of its clauses

hs superfluous literals (24:523)."

A-11

Another application for the prime implicants of a formula is for Boolran iiiff rf 11c.

also called Boolean reasoning. Boolean inference is -the extraction of conclusions from a

collection of Boolean data" (6:2.0-2). The basis for Boolean inference is the Blake canoical

form. The Blake canonical form, denoted BCF(f), of a function f is the disjunction of all

of the prime implicants of f. The Blake canonical form is a complete and simplified

representation of all possible conclusions that can be inferred from a Boolean equation.

Methods for generating BCF(f) are by the exhaustion of implicants, iterated consf n,,us.

and multiplication. Blake invented the methods of iterated consensus and multiplication

(3). Iterated consensus is discussed in (24); the multiplication method is found in (29).

Example A.5.

The n-variable Boolean function defined in Table A.1 and represented by the formula

Xyz + y'z/ + x' (A.45)

is in Blake canonical form because the formula consists of all of the prime implicants of

the function. 0

Reduction

Any system of Boolean equations can be reduced to a single Boolean equation of the

form f(x) = g(x) where g(x) is any preassigned Boolean function (28:116-117). In partic-

ular. we may choose g(x) to be 0 or 1. (The notation x denotes the vector (X, X2. x,,).)

The form f(x) = 0 is derived in the following manner. A system

gI(K) = hi(x) (A. 16)

g 2 (:L) = h2 (

gn(:L) = (x)

of Boolean equations can be transformed, using property (A.30), into the equivalent systeim

A-12

gI(E hI :) = 0 (A.17)

92(l) h2 (!K) =0

g. :L)h, :K 0.

This svste m of equations can then be transformed into a single Boolean equiation b~y r-

ertY (A.32). Since all of the equations must be simultaneously true. they are

together as in equation kA.32). However, the "&" symbol is dropped for notational >ui

plicity. The resulting single Boolean equation is

f(x) = 0 (A.-I)

where f is defined by

n

f = (g -- gh) (A.49)

A - 13

The p(x) = 1 form of a system of equations is similarly (h, rivold. The .t ,,I

equations (A.46) can be transformed into an equivalent system using the property Iwvxn

by equation (A.31):

,/ (_) -h z_) = t .-, 1

,2(.L) h 2 (1) =

,q,, _) : ,(z 1.

Ilis Vstein of eq iations is transformed into a single Boolean equation bY oqatin iA..\11.

\tilin. the -K'-- symbol is dropped for notational simplicity. The resulting niiige Hooloan

eq lati ioln is

p(l) 1 A

where p is defined by
p r JH (g , h ,j , ,.-,2

t=lI

p (g~h, + gh,. .\

The ut'ility Of the choice of the f(x) = 0 form versus the plx) I form is d,p,,d,iit

0[the a pplication (2852). (onversion between the two fortrrs is done by CunphlernnTaiTI

Of hoth ids of the eqiali ty, i.e..

f'(1) = 0 . f(-r) I I

(I. d

A- I4

Eliviinants

The Conjunctive Elirninant. For an n-variable llooleatt function f B'-- 1

with %, ariables x, x, and a subset {XI, X2} of the v'ariables. the -oniJuI('twtIHI: hll it

of the function with respect to {XI 1 } is defined as:

ECO.V(f{, x 2 }V X"7J r f(XI, X2,X 3 . 1X,)

AIilthoug~h a specific subset of the v-ariables was use d in the above(dlefinit ion, lith1!.

oliiinant of a fuinct ion may' he founiid with respect to an arhi trarv subset of li vn L.

inl thle function.

Exainple A.6:

I'hi (:onjunctive-c eliminant of a function f(x. y, z) with respect to Sis givenl 1'v

Brown has shown that the conjunctive eliminant of a fund ion Mi lfla1kf'c. i

furiii with respect to a giv~en %'arialble is the sumn of termns in the form which (d0 i t\

the, variable (6:3.8-2). Formaly.

H Y).(f. {y}) =Zu~eryns of BCF(f) n-hich do not bart a lif ral yj (r o'i. -

TFhe resulting formula is in Blake canonical form.

A\- 15

The Disjunctive Eliminant. For an n-variable Boolean function f : B" - B

with variables xI,...,x, and a subset {x 1 ,x 2} of the variables, the disjuncti'c (li7i,,UIt

of the function with respect to {X.r,1 2} is defined as:

EDIS(f, {.ri,x 2}) = Z f(x 1 ,X 2 , X3, . .X). (Ab)

(6:3.8-1)

.. s in the conjunctive eliminant, the disjunctive eliminant of a function may be found with

respect to an arbitrary subset of the variables in the function.

Example A.7:

The disjunctive eliminant of the function f(xy, z) with respect to z is

EDIS(f(x,y,z), {z}) = f(x,y,O)+ f(x,y, 1). (A.61)

A simple method for deriving the disjunctive eliminant of a Boolean function f

is by transforming the formula that represents the function to any equivalent sum-of-

products form and then replacing the literals of the variables to be eliminated, whether in

complemented or uncomplemented form, by 1 (22).

Elimination

Given a Boolean equation, it is possible to determine constraints on certain vari-

ables given the absence of information with respect to the other variables using a process

called elimination. Equations deduced as the result of elimination are called rusultant, of

elimination.

Using the definition of the conjunctive eliminant, a variable may be eliminat,,d from

an ,,quation to form a new equation:

f(x)=O ' ECON(f,{x,})=O (A.62)

A- 16

The equation ECON(f, {x,}) = 0 is called the resultant of elimination of x, from equation

f(X) = 0.

Using the definition of the disjunctive eliminant, a variable may L- eliminated from

an equation to form a new equation:

p(x) = 1 = EDIS(p,{x,})= 1 (.\.63)

The equation EDIS(f, {xi}) = 1 is called the resultant of elimination of x, from equationl

p(r) = 1.

Solutions of Boolean Equations

A solution of the equation f(x) = 0 is a vector a E B ' such that f(!!) = 0 is an

identity. In general, it is inconvenient to determine solutions of the f(x,y,z) = 0 form

of an equation. A simple method to find a solution to an equation is first to convert the

equation to the equivalent p(xy. z) = 1 form as in equation (A.55), and then express p in

miinterm canonical form. Solutions are found by inspection of the minterms of p(x, y, z).

Example A.8:

Given the equation

Xyz' + x'z + y'z = 0. (A.G4)

the f(.) = 1 form of this equation is

Xyz + x'z' + y'z' = 1. (A.(65)

The minterm canonical form of the left-hand side of this equation is used to form a new

equation

xyz + x'yz' + x'y'z' + .y'z' =. (AiG)

Bv inspection, solutions of the equation are

(0, 0, 0),A(0, 1.0),(1,0,0),(1. 1. (A.67)

A- 17

An equation typically will have several solutions. Constant vectors, a and b, are

called equivalent with respect to f if f(a) = f(_). Two equations are called 'equirahlnt if

they have the same set of solutions" (28:50).

Comparison of Functions

Given two n-variable Boolean functions f and g, a function h can be constructed

which shows all circumstances in which functions f and g are different. h is defined in the

following way:

feg = h (A.6S)

Minterms of h define the differences between f and g.

Example A.9:

Given the equations f(x, y) = x and g(x,y) = y, h(x,y) is found as follows:

h(x,y) = f(x,y)&g(x,y) (A.69)

= x+?y.

Minterms of h(x, y) are xy' and x'y. The results are summarized in Table A.4. E

X y f(x,y) Ig(Xy) h(xy)

00 0 0 0
01 1 0 1

10 0 1 1

11 1 1 0

Table A.4. Results of Example A.9

A -18

Appendix B. Cerny-based Diagnostic System Code

This appendix contains the commented code for the diagnostic system describe(d ii

Chapter 5. Three of the files required are not part of this appendix as they were borrowed

in their entirety from Kainec. They are cited below.

The following files comprise the diagnostic system:

" boolean.s (18:335-347)

" prefixer.s (18:234-246)

" tokenize.s (18:225-233)

" nenu.s

* test I.s

" test ls.s

" test2.s

* test2s.s

" test3.s

" test3s.s

* utils.s

* utils2.s

The system is entered by typing menu and is driven by prompts to the user.

13- 1

;; FILENAME: menu.s

;; FILES REQUIRED FOR CALLED FUNCTIONS: testl.s, test2.s,

test3.s, testls.s, test2s.s, test3s.s,

utils.s, prefixer.s, tokenize.s

;; FUNCTION: menu

;; CALLING FUNCTION(S): single-fault-com, single-fault-seq,

bridge-fault-com, bridge-fault-seq,

multiple-fault-com, multiple-fault-seq

;; CALLED FUNCTIONS(S): get-tokenized-list, token->prefix

get-internal-nodes, get-output-nodes,
get-input-nodes, remove-duplicates,

get-output-equations,

remove-output-equations
single-fault-com, single-fault-seq,
bridge-fault-com, bridge-fault-seq,

multiple-fault-com, multiple-fault-seq

;; PURPOSE: This is the main routine for the diagnostic system.

It first prompts the user for a choice of diagnostic
routine. It then uses GET-TOKENIZED-LIST to prompt

the user for the circuit input file (containing the
output-equations and individual circuit

characteristic equations-- CCEs) which is read in and
stored as a list of tokens. TOKEN->PREFIX converts

the tokenized-list into the intermediate-format data

structure which maintains the structure and identity
of the circuit. Lists of the nodes in the circuit

are then collected, based on location in the circuit.

The output equations in the circuit are then
collected and removed from the intermediate-format so
that only the individual CCEs remain. A branch is

then taken based on the diagnostic routine chosen.

The collected information is passed to the called

routine.

8-2

;; VARIABLES: none

(define (menu)

(newline)
(writeln " ENTER NUMERICAL CHOICE OF DIAGNOSTIC ROUTINE:")

(newline)
(writeln " 1. SINGLE SA FAULT ANALYSIS --

COMBINATIONAL CKT")
(writeln 2. SINGLE SA FAULT ANALYSIS --

SEQUENTIAL CKT")
(writeln " 3. BRIDGE FAULT ANALYSIS --

COMBINATIONAL CKT")
(writeln " 4. BRIDGE FAULT ANALYSIS --

SEQUENTIAL CKT")
(writeln " 5. MULTIPLE SA FAULT ANALYSIS --

COMBINATIONAL CKT")
(write n " 6. MULTIPLE SA FAULT ANALYSIS --

SEQUENTIAL CKT")
(writeln " 7. EXIT")

(newline)

(let* ((fault-choice (read-line)))

(if (equal? fault-choice "7")

(writeln "EXITING DIAGNOSTIC SYSTEM.")

(let* (
(intermediate-formatl (token->prefix

(get-tokenized-list)))

(internal-nodes (get-internal-nodes

intermediate-formatl))
(output-nodes (get-output-nodes intermediate-formatl))

(input-nodes (get-input-nodes intermediate-formatl))
(output-equations (remove-duplicates

(get-output-equations intermediate-formatl

internal-nodes)))
(intermediate-format2 (remove-output-equations

intermediate-format1 output-equations)))
(cond ((equal? fault-choice "1")

(single-fault-com intermediate-format2 internal-nodes
output-nodes input-nodes output-equations))

((equal? fault-choice "2")

(single-fault-seq intermediate-format2 internal-nodes
output-nodes input-nodes output-equations))

((equal? fault-choice "3")

B-3

(bridge-fault-com intermediate-format2 internal-nodes

output-nodes input-nodes output-equations))
((equal? fault-choice "4")

(bridge-fault-seq intermediate-format2 internal-nodes

output-nodes input-nodes output-equations))
((equal? fault-choice "5")

(multiple-fault-com intermediate-format2 internal-nodes

output-nodes input-nodes output-equations))

((equal? fault-choice "6")

(multiple-fault-seq intermediate-format2 internal-nodes

output-nodes input-nodes output-equations))

(else

(begin

(newline)
(writeln " INCORRECT DIAGNOSTIC ROUTINE ENTRY!")

(newline)

(menu))))))))

B-4

;; FILENAME: testl.s

;; FILES REQUIRED FOR CALLED FUNCTIONS: boolean.s, utils2.s

;;FUNCTION: single-fault-con

CALLING FUNCTION(S): menu, single-fault-com

;;CALLED FUNCTION(S): get-fault-variable, cut-node,
get-vector-function, combinational-test,
output-results, again?, single-fault-con,

menu

;;PURPOSE: This function performs diagnosis of single stuck-at
faults in combinational circuits when called upon to
do so by MENU. The user is prompted for a single
suspected faulty variable using GET-FAULT-VARIABLE.

The fault-variable is used to isolate the faulty line
in the circuit. CUT-NODE does this by replacing the
variable with a TECT y~riable in the intermediate
format description. The intermediate format
description contains the individual CCEs described in

3, the text of the thesis. CUT-NODE also deletes any

logic that may be feeding the suspected faulty node.
GET-VECTOR-FUNCTION then derives the Output
Characteristic Function (OCF) that is used to produce

3, test vectors. COMBINATIONAL-TEST generates the
stuck-at (first zero, and then one if the zero test
passes) test vectors and then walks the user through
an input/output test procedure. COMBINATIONAL-TEST
also performs generation and analysis of the i/o test
results to determine the presence or absence of a
fault. Diagnostic test results are provided to the
user via the OUTPUT-RESULTS function. AGAIN? provides
the option of testing a different line in the same circuit.

;;VARIABLES: intermediate-format --

data structure containing the system of

equations describing the circuit at the gate

B- 5

level

internal-nodes --

list containing internal circuit variables

output-nodes --
list containing output circuit variables

input-nodes --
list containing input circuit variables

output-equations --
overall functional equations relating primary

inputs to each circuit output

3:3:3333,33 3:3::::33 3333:3:: :333333:333333w 33,,,,,,, 33333331333

(define (single-fault-com intermediate-format internal-nodes

output-nodes input-nodes

output-equations)

(newline)
(let* ((fault-variable (get-fault-variable))

(new-format (cut-node intermediate-format input-nodes
output-equations fault-variable))

(vector-function (get-vector-function new-format

internal-nodes output-nodes

output-equations)))
(if (null? vector-function)

(writeln "NO TEST POSSIBLE FOR THIS VARIABLE.")

(let* (

(results (combinational-test vector-function input-nodes

output-nodes output-equations

intermediate-format fault-variable)))
(output-results results fault-variable)))

(if (again?) (single-zault-com intermediate-format

internal-nodes output-nodes
input-nodes output-equations)

(begin
(read-line)

(menu)))))

3333333333333:3333,3:333,3,3:33333333333333333::333333::::333 33-63

;; FUNCTION: get-fault-variable

;; CALLING FUNCTION(S): single-fault-com, single-fault-seq

;; CALLED FUNCTION(S): none

;; PURPOSE: This function prompts the user to input the suspected

faulty node from the circuit, and reads the entry.

;; VARIABLES: none

99999999999999999999999999999:::99:9::9:::::::9::::::9:9::::::::9.9

(define (get-fault-variable)

(newline)
(writeln "ENTER THE VARIABLE THAT LABELS THE SUSPECTED FAULTY

LINE:")
(newline)

(read))

;; FUNCTION: cut-node

;; CALLING FUNCTION(S): single-fault-com, single-fault-seq

bridge-fault-com, bridge-fault-seq

;; CALLED FUNCTION(S): check-list, replace-variable, delete-ccf

;; PURPOSE: This function modifies the original set of individual

CCEs (ccf-list) based on the suspected faulty node.
It first checks to see if the node is an input node
using CHECK-LIST. If it is an input node then
the function replaces the node in the CCEs with a
TEST variable. If the node is not an input then it
must either be an internal or output node. In either

case the function deletes the logic (ccf) feeding the
node using DELETE-CCF, in addition to replacing the
node. A special case exists when there are no

internal internal nodes in the circuit. The function
MENU is set up to delete all output equations

from the original input file and will leave no CCEs
when no internal nodes exist. This is accounted for

here by performing the CUT-NODE function on the

B-7

output equations of the circuit. In the case where
no internals exist then the output aquationg also

describe the circuit at the gate level.

;; VARIABLES: ccf-list -- the intermediate-format, a list of

the individual CCEs describing the

input-nodes -- list of circuit inputs

output-equations -- list of circuit output

; , equations

fault-variable -- suspected fault node provided by
user

(define (cut-node ccf-list input-nodes output-equations

fault-variable)
(let* ((replacement-var 'TEST))
(if (null? ccf-list)

(if (check-list input-nodes fault-variable)
(replace-variable output-equations replacement-var

fault-variable)
(replace-variable (delete-ccf output-equations

fault-variable) reDlacement-var
fault-variable))

(if (check-list input-nodes fault-variable)

(replace-variable ccf-list replacement-var

fault-variable)
(replace-variable (delete-ccf ccf-list fault-variable)

replacement-var fault-variable)))))

;; FUNCTION: check-list

;; CALLING FUNCTION(S): cut-node, check-list, cut-node2

;; CALLED FUNCTION(S): check-list

PURPOSE: This function searches a list containing no internal

lists for a particular item. In all cases here the

lists are lists of variables; the searched for item

B-8

is a suspected fault variable.

;; VARIABLES: variable-list -- list to search

fault-variable -- item to search for

(define (check-list variable-list fault-variable)
(cond ((null? variable-list) nil)

((equal? (car variable-list) fault-variable) t)

(else

(check-list (cdr variable-list) fault-variable))))

;; FUNCTION: replace-variable

;; CALLING FUNCTION(S): cu. node, replace-variable, cut-node2

;; CALLED FUNCTION(S): replace-variable

;; PURPOSE: This function substitutes the specified fault node
with a replacement variable in the list of CCEs
regardless of the depth of a given CCE.

VARIABLES: ccf-list -- individual circuit characteristic

equations

replacement -- the variable to substitute in

fault-variable -- the variable to replace

(define (replace-variable ccf-list replacement fault-variable)

(cond
((null? ccf-list) nil)
((atom? (car ccf-list))

(cond ((equal? (car ccf-list) fault-variable)

(cons replacement (cdr ccf-list)))

(else
(cons (car ccf-list)

B-9

(replace-variable (cdr ccf-list)
replacement fault-variable)))))

(else

(append (list (replace-variable (car ccf-list)

replacement fault-variable))

(replace-variable (cdr ccf-list)

replacement fault-variable)))))

;; FUNCTION: delete-ccf

;; CALLING FUNCTION(S): cut-node, cut-node2

CALLED FUNCTION(S): find-ccf, remove

;; PURPOSE: This function finds a particular CCE in a set of
individual CCEs and removes it from the set. The

; * search for the CCE to be deleted keys on the
suspected fault node.

;; VARIABLES: ccf-list -- individual CCEs

fault-variable -- suspected fault node

(define (delete-ccf ccf-list fault-variable)

(let* ((ccf-to-go (find-ccf cc±-list fault-variable)))

(if (null? ccf-to-go) nil

(let* (
(new-ccf-list (remove ccf-to-go ccf-list)))

new-ccf-list))))

FUNCTION: find-ccf

CALLING FUNCTION(S): delete-ccf, find-ccf

;; CALLED FUNCTION(S): find-ccf

;; PURPOSE: This function searches a list of CCEs for a CCE that

B-10

contains the fault variable as the output of a gate.

; , It is also the filter to determine if the user has
specified a node that does not exist in the circuit

description. If all CCEs are searched without
finding the specified node then this is the case.

;; VARIABLES: ccf-list -- list of individual CCEs

fault-variable -- suspected fault node

(define (find-ccf ccf-list fault-variable)

(cond ((null? ccf-list)

(begin

(writeln "ERROR, ONE OR MORE SPECIFIED VARIABLES DO NOT
EXIST IN THIS CIRCUIT.") (writeln "PROCESSING) nil))

((equal? (cadr (car ccf-list)) fault-variable)

(car ccf-list))
(else

(find-ccf (cdr ccf-list) fault-variable))))

33::,3333333,333,,:,,:3:333333333::::::3*333333::3::3 ,,,,,,,,,,,,3

;; FUNCTION: get-vector-function

;; CALLING FUNCTION(S): single-fault-com, single-fault-seq

bridge-fault-com, bridge-fault-seq

multiple-fault-com, multiple-fault-seq
get-vector-function

;; CALLED FUNCTION(S): get-vector-function, get-vf

;; PURPOSE: This function generates the functions that are later

used to generate test vectors. We talk in terms of
vectors in this case knowing that all functions are

equal to one. The function iteratively calls GET-VF
to combine the individual CCEs with each output

;equation. Another way to approach this is to combine

all of the output equations and then combine them
; , with the overall CCE. The resulting function is the

same. The process used here results in a function
of functions that is equivalent to using the other

approach.

B-11

;; VARIABLES: ccf-list -- modified list of individual CCEs

internal-nodes -- list of circuit internal nodes

output-nodes -- list of circuit output nodes

output-equations -- list of circuit output

equations

(define (get-vector-function ccf-list internal-nodes output-nodes
output-equations)

,if (null? output-equations) nil
(let* ((vf (get-vf ccf-list internal-nodes output-nodes

(list (car output-equations))))
(vf2 (append vf (get-vector-function ccf-list

internal-nodes output-nodes

(cdr output-equations)))))
vf2)))

;; FUNCTION: get-vf

,; CALLING FUNCTION(S): get-vector-function

,; CALLED FUNCTION(S): make-sop, eliminate, simplify

PURPOSE: This function calls MAKE-SOP to change each prefix-

form equation into a function of variables set equal

to one (the one being implicit, not explicit). These
equations include the modified individual CCEs and

output equations. In the process MAKE-SOP also
combines the equations in a given description. In
this case the individual CCEs and output equatins are
combined into one equation. ELIMINATE is called to
eliminate the internal variables and output variables

from the final combination. The order of operations
does not correspond to the order presented in the
mathematical development, but is faster and does the

same job. COMPLEMENT completes the Cerny routine;
SIMPLIFY reduces the result.

B-12

;; VARIABLES: ccf-list -- modified CCEs

internal-nodes -- internal nodes of the circuit

output-nodes -- output nodes of the circuit

output-equation -- a circuit output equation

;get one vector function
(define (get-vf ccf-list internal-nodes output-nodes

output-equation)
(let* ((new-ccf (append ccf-list output-equation))

(sopl (make-sop new-ccf))

(sop2 (eliminate sopl internal-nodes))

(sop3 (eliminate sop2 output-nodes))

(sop4 (simplify (complement sop3))))
sop4))

;; FUNCTION: make-sop

;; CALLING FUNCTION(S): get-vf, make-sop, mksops, init-eqsl

;; CALLED FUNCTION(S): make-sop, add, mult, xor, xnor, complement

;; PURPOSE: Orginally coded by Kainec (18:273), this function was

developed to collapse a system of equations into a
form that sets a function of all the variables equal

to zero. It is changed to realize a function-set-

equal-to-one form.

;; VARIABLES: lst -- a list of the system of equations to be

collapsed

(define (make-sop 1st)

(cond ((null? 1st) '(0))

B-13

if 1st is atomic return it in SOP list format

((atom? Ist)
(list (list ist)))

if the first element is atomic, then 1st is in prefix
;form

((atom? (car 1st))
(let ((first-elt (car Ist))

(second-elt (cadr 1st)))

(if (eq? 'NOT first-elt)

if first-elt is NOT, then complement the SOP
form of the second element

(if (atom? second-elt)

(list (list (list second-elt)))

(complement (make-sop second-elt)))

if the first-elt is a valid Boolean operator,

perform the operation on the SOP forms of the
second and third elements

(cond ((or (eq? '+ first-elt) (eq? 'OR

first-elt))
(add (make-sop second-elt) (make-sop

(caddr 1st)))

((or (eq? '* first-elt) (eq? 'AND

first-elt))
(mult (make-sop second-elt) (make-sop

(caddr Ist))))

((or (eq? '! first-elt) (eq? 'XOR

first-elt))
(xor (make-sop second-elt) (make-sop

(caddr 1st))))

(else
'())))))

the input lists is a list of lists - assume that these

lists are
a system of equations in prefix form, break up
accordingly, and make into SOP forms

(else

(let* ((first-list (car 1st))

B-14

(rest-of-list (cdr lst))

(first-elt (car first-list))

(second-elt (cadr first-list))

(third-elt (caddr first-list)))

(cond ((eq? 'EQ first-elt)

(mult (xnor (make-sop second-eli)

(make-sop third-elt))

(make-sop rest-of-list)))

if first-elt of first-list is LE, then take
MULT the SOP form of second-elt by the

COMPLEMENT of the SOP form of third-elt.
ADD the result to the SOP form of the

rest-of-list
((eq? 'LE first-elt)

(mult (add (complement (make-sop

second-elt))
(make-sop third-elt))

(make-sop rest-of-list)))

if first-elt of first-list is GE, then take
MULT the COMPLEMENT of the SOP form of

second-elt by the SOP form of third-elt.

ADD the result to the SOP form of the

rest-of-list

((eq? 'GE first-elt)
(mult (add (make-sop second-elt)

(complement (make-sop third-elt)))

(make-sop rest-of-list)))

otherwise, assume that each sublist of 1st

is a formula and add its SOP form to the SOP

form of the rest-of-list

(else
(mult (make-sop first-list)

(make-sop rest-of-list))))))))

;; FUNCTION: eliminate

;; CALLING FUNCTION(S): get-vf, eliminate

B-15

;; CALLED FUNCTION(S): edis, eliminate

;; PURPOSE: Originally coded by Kainec (18:283), this function
was developed to iteratively eliminate a list of

nodes from a function using the conjunctive
eliminant. It has been changed to reflect the
function-equal-to-one form by using the disjunctive

eliminant for elimination.

;; VARIABLES: f -- the function to eliminate the variables from

nodes -- the nodes to eliminate

(define (eliminate f nodes)

(if (null? nodes)

f
(let ((new-f (edis f (list (car nodes)))))

(eliminate new-f (cdr nodes)))))

;; FUNCTION: combinational-test

;; CALLING FUNCTION(S): single-fault-com

;; CALLED FUNCTION(S): get-sa-zero, supplement, mksops,
get-result1, bad-result?, get-sa-one,

get-result2

;; PURPOSE: This function takes the function generated in
GET-VECTOR-FUNCTION and generates test
vectors to be applied to the circuit. A vector

capable of detecting the specified fault node

stuck-at-zero is generated using GET-SA-ZERO and
SUPPLEMENT. The user is directed to apply the vector

and is prompted for the resulting outputs in
GET-RESULT1. GET-RESULTI also combines the vector
with the resulting outputs to support comparison to
the output equations using BAD-RESULT?. MKSOPS

changes the output equations from prefix-form into
function-equal-to-one form for the comparison. If

B-16

BAD-RESULT? determines that a fault exists then the

user is informed that the node is stuck-at-zero. If

not then a test vector for the stuck-at-one test is
generated, the results are processed and the user is
given a message based on whether the node was
stuck-at-one or not.

VARIABLES: function -- a function of the primary inputs and

test variable used to generate test

vectors

in-nodes -- circuit input nodes

out-nodes -- circuit output nodes

out-eqs -- circuit output equations

int-form -- the original individual CCEs

fault-var -- the suspected fault node

(define (combinational-test function in-nodes out-nodes out-eqs int-form

fault-var)
(let* ((z-vector (supplement (car (get-sa-zero function)) in-nodes))

(out-eqs2 (mksops out-eqs))
(resulti (get-resulti z-vector out-nodes t)))

(if (bad-result? resultl fault-var int-form out-eqs2)

'(SAO)

(let* ((o-vector (supplement (car (get-sa-one function))

in-nodes))
(result2 (get-result2 o-vector out-nodes t)))

(if (bad-result? result2 fault-var int-form out-eqs2)

I(SAI)

'(NOR))))))

;; FUNCTION: get-sa-zero

;; CALLING FUNCTION(S): combinational-test

;; CALLED FUNCTION(S): replace-with-zero

B-17

;; PURPOSE: Calls REPLACE-WITH-ZERO to replace the TEST variable

with the value zero to get a function of

minterms to test a stuck-at-zero condition.

;; VARIABLES: function -- the function in which the substitution
.; ta-az -,lace

(define (get-sa-zero function)

(let* ((vect-fun (replace-with-zero function '(TEST))))
vect-fun))

;; FUNCTION: supplement

;; CALLING FUNCTION(S): combinational-test, sequential-test

combinational-testb, sequential-testb

combinational-testm, sequential-testm
supplement

;; CALLED FUNCTION(S): bar, supplement

;; PURPOSE: When a minterm representing a test vector is

generated it does not always contain all of the
primary inputs of the circuit. When this happens

it indicates that the missing inputs can be set to

either a logic-zero or logic-one value. Supplement
fills in the missing variables in their logic-one
representation. The function searches the vector
comparing all input vectors to determine if they

are present in complemented or uncomplemented form.
If not then the uncomplemented form is tacked on the

end.

;; VARIABLES: vector -- the generated test vector

sup-vars -- the list of input variables

(define (supplement vector sup-vars)

B-18

(if (null? vector) nil
(if (null? sup-vars) vector

(if (or (member (car sup-vars) vector)
(member (bar (car sup-vars)) vector))

(supplement vector (cdr sup-vars))

(begin

(let* ((new-vector (coiis (car sp-varb) vector)))
(supplement new-vector (cdr sup-vars))))))))

;; FUNCTION: mksops

;; CALLING FUNCTION(S): combinational-test, bridge-fault-com,
bridge-fault-seq, multiple-fault-com,

multiple-fault-seq, mksops

;; CALLED FUNCTION(S): make-sop, mksops

;; PURPOSE: This function takes a list of equations and changes
them individually into sum-of-product form using

MAKE-SOP. The equations are left separated

as opposed to collapsing them into one equation.

;; VARIABLES: out-eqs -- the list of equations to be transformed;

in this case the list of output

equations

,,,,,,'P,,, P II,p s 5 59 , P P SSIS)SDSS5 I , IP S PIlS 5 5555 555S S I 55I)

(define (mksops out-eqs)

(if (null? out-eqs) nil

(let* ((new-eq (make-sop (list (car out-eqs)))))

(cons new-eq (mksops (cdr out-eqs))))))

*5*oS.. P.o,, J o S, S S.,, , 5*,o,°, Do,,° 5,.,.o. S°,o° So ,,,,,

;; FUNCTION: get-resultl

;; CALLING FUNCTION(S): combinational-test, get-result1

;; CALLED FUNCTION(S): output-vector, bar, get-resultl

B-19

;; PURPOSE: This function outputs the generated vector to the
user to apply it to the circuit. It then iter'tively
collects the output results from the user and
combines these with the minterm used to get the
vector.

;; VAK.±ALES: vector -- the minterm representing the test vector

outputs -- a list of the circuit's output nodes

flag -- flag starts as false and is changed to
true on successive calls to keep from
sending the "apply vector" part of the
function to the screen more than once

(define (get-resultl vector outputs flag)
(if (null? outputs) nil

(begin

(if flag

(begin

(newline)
(writeln "APPLY THE FOLLOWING VECTOR TO TEST A STUCK-AT-ZERO

CONDITION")

(writeln "ON THE SUSPECTED FAULTY LINE:")
(newline)

(output-vector vector)
(newline)))
(display "INPUT THE RESULT FROM OUTPUT ")

(display (car outputs))
(writeln "... 0 or 1:")
(let* ((ans (read)))

(if (equal? ans 0)
(append (list (cons (car outputs) vector)) (get-resulti

vector (cdr outputs)

nil))
(append (list (cons (bar (car outputs)) vector))

(get-result1 vector (cdr outputs) nil)))))))

;; FUNCTION: output-vector

B-20

;; CALLING FUNCTIONS(S): get-resultl, get-result2, get-res3,
get-res4, get-result, get-result-s,

output-vector

;; CALLED FUNCTION(S): output-vector

;; PURPOSE: This function sends the test vector to the screen.
If a particular variable is in complemented form

(noted by being enclosed in parens) then it is

sot to zero in the circuit; if uncomplemente then

it is set to one.

;; VARIABLES: vector -- the minterm representing the test vector

(define (output-vector vector)

(newline)

(if (null? vactor) nil

(begin
(if (symbol? (car vector))

(begin (display (car vector))

(writeln " = 1"))

(begin (display (bar (car vector)))

(writeln " = 0")))
(output-vector (cdr vector)))))

;; FUNCTION: bad-result?

;; CALLING FUNCTION(S): combinational-test, sequential-test

;; CALLED FUNCTION(S): mult, complement, related?, bad-result?

;; PURPOSE: This function compares the terms formed by
GET-RESULTI(2) to the output equations associated
with the output used to get the term. The

association is made by getting the terms in the same
order as the ouput equations are listed in. The

function uses RELATED? to inrure that comparisons
are only made with outputs tnat the suspected fault

node is accessible to. The comparison is done by
complementing the output equation and ANDing it with

B-21

the term. If the result is zero then a fault exists.
This is contrasted with the description in the thesis
which ANDs the output equation with the term, and
interprets a zero result as good. The results are
the same. If a fault exists this function returns
true, otherwise false.

;; VARIABLES: test-results -- the terms formed in GET-RESULT1(2)
;;

fault-var -- the suspected fault node

inter-form -- the original unmodified individual

CCEs

output-eqs -- a list of the circuit's output

equations in sum-of-products form

;to be determined at fault the node must be related logically to
:output in question and the output must be in error
(define (bad-result? test-results fault-var inter-form output-eqs)

(if (or (null? outFut-eqs) (n.ll? test-results)) nil
(if (and (null? (mult (complement (car output-eqs))

(list (car test-results))))
(related? fault-var (car output-eqs) inter-form))

t
(bad-result? (cdr test-results) fault-var inter-form

(cdr output-eqs)))))

;; FUNCTION: related?

;; CALLING FUNCTION(S): bad-result?, bridged?, faulty?
;;

;; CALLED FUNCTION(S): related-2?

;; PURPOSE: This function determines whether or not a particular

node has access to a particular output.

;; VARIABLES: fault-var -- suspected fault node

output-eq -- the output equation containing the

B-22

output to be checked

inter-form -- the original individual CCEs

(aetine (related? tauit-var output-eq inter-form)
(related-2? fault-var output-eq inter-form inter-form))

* 9 ~ ~ 9 9 9 9 , , ,~9 9,., 9999999D999'''I'~9JP P 99P99*,~p , 9999999999999)pp

;; FUNCTION: related-2?

;; CALLING FUNCTION(S): related?, related-2?

;; CALLED FUNCTION(S): flatten, related-2?

;; PURPOSE: This function does the check for access by first
checking the output equation for the variable. If

it is not directly related to the output in question
then the function checks other gates in the circuit
to see if it is indirectly related.

;; VARIABLES: fault-var -- the suspected fault node, could be any
variable that we choose to check for

access

output-eq -- the equation containing the output
node that we are checking for access

to

inter-form -- the original individual CCEs

inter-form-u -- the original individual CCEs,
required twice because the other
inter-form gets modified during the

recursion

(define (related-2? fault-var output-eq inter-form inter-form-u)
(if (member fault-var (flatten output-eq)) t
(if (null? inter-form) nil

(if (and (member fault-var (flatten (car inter-form)))

B-23

(not (equal? fault-var (cadr (car inter-form)))))
(related-2? (cadr (car inter-form)) output-eq

inter-form-u inter-form-u)

(related-2? fault-var output-eq (cdr inter-form)
inter-form-u)))))

;; FUNCTION: get-sa-one

;; CALLING FUNCTION(S): combinational-test

;; CALLED FUNCTION(S): replace-with-one

;; PURPOSE: Calls REPLACE-WITH-ONE to replace the TSqT variable

with the value one to get a function of

minterms to test a stuck-at-one condition.

;; VARIABLES: function -- the function in which the substitution
takes place

9999999.99999999939399:9:99999999999999999399999:9999999999999999999

(define (get-sa-one function)

(let* ((vect-fun (replace-with-one function '(TEST))))
vect-fun))

;; FUNCTION: get-result2

;; CALLING FUNCTION(S): combinational-test, get-result2

;; CALLED FUNCTION(S): output-vector, get-result2

;; PURPOSE: This function is the same as GET-RESULTI but is run

for a stuck-at-one test.

;; VARIABLES: vector -- the minterm representing the test vector

outputs -- circuit outputs

flag -- used to avoid repeatint "output vector'

routine

B-24

(define (get-result2 vector outputs flag)
(if (null? outputs) nil
(begin

(if flag

(begin

(newline)
(writeln "APPLY THE FOLLOWING VECTOR TO TEST A STUCK-AT-ONE

CONDITION')
(writeln "ON THE SUSPECTED FAULTY LINE:")

(newline)
(output-vector vector)

(newline)))

(display "It"PT T14E RESULT FROM OUTPUT ")

(display (car outputs))
(writeln . -- 0 or 1:")
(let* ((ans (read)))
(if (equal? aris 0)

(append (list (cons (car outputs) vector))

(get-result2 vector (cdr outputs)

nil))
(append (list (cons (bar (car outputs)) vector))

(get-result2 vector (cdr outputs) nil)))))))

;; FUNCTION: output-results

;; CALLING FUNCTION(S): single-fault-com, single-fault-seq

;; CALLED FUNCTION(S): none

;; PURPOSE: This function outputs the appropriate test result to

the user.

;; VARIABLES: results -- generated by COMBINATIONAL-TEST when

; , the final test result is determined

fault-var -- the suspected fault node

B-25

(define (output-results results fault-var)

(newline)

(newline)
(cond ((member 'SAO results)

(begin (display "LINE ") (display fault-var)
(writeln " IS STUCK-AT-O.")))

((member 'SAl results)
0begin (display "LINE ") (display fault-var)

(writeln " IS STUCK-AT-i.")))

((member 'NOR results)
(begin (display "LINE ") (display fault-var)
(writeln " IS NORMAL.")))

(else
(writeln "UNABLE TO GENERATE TEST WITH INFORMATION

GIVEN."))))

* :: :::::::: :::::::::::33::: 33::: 91339393:::::::::::: 3: 3: 333333

;; FUNCTION: again?

;; CALLING FUNCTION(S): single-fault-com, single-fault-seq

;; CALLED FUNCTION(S): none

;; PURPOSE: This function provides the user with the opportunity

to test the same circuit for another faulty node.

;; VARIABLES: none

(define (again?)

(newline)
(writeln "WOULD YOU LIKE TO RUN A SINGLE FAULT TEST ON ANOTHER")

(writeln "NODE IN THE CIRCUIT?")

(writeln "TYPE y<rtn> OR n<rtn>.")

(let ((answer (read)))

(if (equal? answer 'y) t

nil)))

13-26

;; FILENAME: testls.s

;; FILES REQUIRED FOR CALLED FUNCTIONS: boolean.s, testl.s

utils2.s, menu.s

; FUNCTION: single-fault-seq

; CALLING FUNCTION(S): menu

; CALLED FUNCTION(S): get-fault-variable, cut-node,
get-state-info, get-vector-function,
sequential-test, output-results, again?
single-fault-seq, menu

.9

;; PURPOSE: This function performs single stuck-at fault

diagnosis in sequential circuits. Operation is much
the same as SINGLE-FAULT-COM. The differences are
primarily in SEQUENTIAL-TEST. The information
obtained in GET-STATE-INFO is used to attempt to
generate test vectors in SEQUENTIAL-TEST. This
information, obtained from the user, gives us the two
known possibilities for the state of the tested

circuit. It is necessary to know, or be able to set,
che present state of the circuit.

;; VARIABLES: intermediate-format -- the unmodified system of

individual CCEs

internal-nodes -- the internal nodes of the circuit

output-nodes the output nodes of the circuit

input-nodes -- the input nodes of the circuit

output-equations -- the output equations of the
39 circuit in prefix form

B-27

(define (single-fault-seq intermediate-format internal-nodes

output-nodes input-nodes output-equations)
(newline)
(let* ((fault-variable (get-fault-variable))

(new-format (cut-node intermediate-format input-nodes
output-equations fault-variable))

(state-info (get-state-info))
(vector-function (get-vector-function new-format

internal-nodes output-nodes
output-equations))

(results (sequential-test vector-function state-info

input-nodes output-nodes
output-equations intermediate-format
fault-variable)))

(begin
(output-results results fault-variable)
(if (again?) (single-fault-seq intermediate-format

internal-nodes output-nodes
input-nodes output-equations)

(begin
(read-line)

(menu))))))

;; FUNCTION: get-state-info

;; CALLING FUNCTION(S): single-fault-seq, bridge-fault-seq,
multiple-fault-seq

;; CALLED FUNCTION(S): get-memory-nodes1, get-mem-valuesl,
get-mem-values2

;; PURPOSE: This function prompts the user for the current-state
* , variables (the outputs of sequential elements),

their present values and their values upon
resetting the circuit. These values are used in
SEQUENTIAL-TFST to attempt to generate test vectors.
The present values of the state variables are first
tried, and if unsuccessful the reset values are
tried. If the latter work then the user is directed
to reset the circuit prior to testing.

B-28

;; VARIABLES: none

.

(define (get-state-info)
(display "ENTER THE CURRENT STATE VARIABLES OF THE CIRCUIT.

THESE ARE THE VARIABLES
THAT LABEL THE OUTPUTS OF SEQUENTIAL ELEMENTS. ENTER VARIABLES ONE
AT A TIME FOLLOWED BY <rtn>. ENTER ''0'', <rtn> WHEN DONE.")

(writeln)

(let* ((mem-nodes (get-memory-nodesl nil)))
(display mem-nodes)

(list mem-nodes (get-mem-valuesi mem-nodes)
(get-mem-values2 mem-nodes))))

.

;; FUNCTION: get-memory-nodesl

;; CALLING FUNCTION(S): get-state-info

;; CALLED FUNCTION(S): get-memory-nodes1

;; PURPOSE: This function gets the current-state variables of the
circuit.

;; VARIABLES: nodes -- starts as nil, this variable collects the
state variables

......................

(define (get-memory-nodesl nodes)
(let* ((node (read)))

(if (equal? node 0) nodes

(let*(
(new-nodes (cons node nodes)))
(get-memory-nodesl new-nodes)))))

. °.........................

;; FUNCTION: get-mem-valuesi

;; CALLING FUNCTION(S): get-state-info

B-29

;; CALLED FUNCTION(S): get-mem-valuesi

;; PURPOSE: This function gets the current values of the state
variables.

;; VARIABLES: nodes -- the state variables

(define (get-mem-valuesl nodes)

(if (null? nodes) nil
(if (atom? (car nodes))

(begin

(newline)
(display "ENTER THE CURRENT VALUE OF STATE VARIABLE ")

(display (car nodes))

(display ".")

(newline)
(writeln "TYPE 0 OR I AND <RTN>:")

(newline)
(let* ((value (read)))

(cons value (get-mem-valuesl (cdr nodes))))))

;; FUNCTION: get-mem-values2

;; CALLING FUNCTION(S): get-state-info

;; CALLED FUNCTION(S): get-mem-values2

;; PURPOSE: This function gets the reset values of the state
variables.

;; VARIABLES: nodes -- state variables

(define (get-mem-values2 nodes)

(if (null? nodes) nil

(begin

(newline)

(display "ENTER THE VALUE OF STATE VARIABLE ")

(display (car nodes))

B-30

(display " WHEN THE CIRCUIT IS RESET.")

(newline)

(writeln "TYPE 0 OR 1 AND <RTN>:")

(newline)
(let* ((value (read)))

(newline)
(cons value (get-mem-values2 (cdr nodes)))))))

;; FUNCTION: sequential-test

;; CALLING FUNCTION(S): single-fault-seq

;; CALLED FUNCTION(S): get-sa-zero, get-terms, remove-mem-nodes

supplement, init-eqs, get-res3,
bad-result?, get-mem-valuesl, get-sa-one

get-res4

;; PURPOSE: This function generates test vectors, prompts the
user to apply them, and processes the results of
application. GET-TERMS is the function that attempts

to derive the vectors using the two possible circuit
states. When a minterm representing a vector is
obtained it is supplemented with missing primary
input variables. Only primary inputs other than

current-state variables are sent to the user for
application. INIT-EQS initializes the output

equations with the state values used to generate the
test vector. This must be done before comparison

using BAD-RESULT?. If the stuck-at-zero test fails
then a stuck-at-one test is conducted. Since the

stuck-at-zero test possibly changes the values of the
state variables they must be obtained again using
GET-MEM-VALUESi.

;; VARIABLES: funczion -- the function used for generating test
vectors; derived using

GET-VECTOR-FUNCTION

state-info -- list of state variables, list of
current state values, list of reset

state values

B-31

input-nodes -- list of circuit input variables

output-nodes -- list of circuit output variables

output-equations -- list of circuit output
equations

;; inter-form -- original unmodified individual CCEs

;; fault-var -- suspected fault node

(define (sequential-test function state-info input-nodes
output-nodes output-equations inter-form fault-var)

(newline)
(let* ((z-function (get-sa-zero function))

(terms (get-terms z-function state-info))
(z-term (caar terms)))
(if (null? z-term) nil
(let* (

(memory-nodes (ca- state-info))

(input-nodes2 (remove-mem-nodes memory-nodes

input-nodes))
(z-vector (supplement z-term input-nodes2))
(out-eqs2 (init-eqs output-equations state-info

(cadr terms)))

(resulti (get-res3 z-vector output-nodes t)))
(if (bad-result? resultl fault-var inter-form

out-eqs2)
'(SAO)
(begin
(display "THE NODE IS NOT STUCK-AT-ZERO.")

(let* (
(new-state-info (list memory-nodes

(get-mem-valuesl memory-nodes)
(caddr state-info)))

(o-fun (get-sa-one function))
(o-term (caar (get-terms o-fun

new-state-info))))
(if (null? o-term) nil

(let* (
(o-vector (supplement o-term input-nodes2))
(result2 (get-res4 o-vector

output-nodes t)))

B-32

(if (bad-result? result2 fault-var

inter-form out-eqs2)
'(SA1)

,(NOR)))))))))))

;; FUNCTION: get-terms

;; CALLING FUNCTION(S): sequential-test, sequential-testb,

sequential-testm

;; CALLED FUNCTION(S): try-current-state, try-with-reset

;; PURPOSE: This function uses the state information from

GET-STATE-INFO along with the function from

SEQUENTIAL-TEST to attempt to generate

a test vector. The minterms in the function

contain the states that the state variables must be
in to apply the associated primary inputs. The two
state possibilities are then substituted to see
if they match one of the necessary conditions. If

successful then the result is a minterm(s)

representing the vector(s) that are
capable of diagnosing the appropriate fault.
The identity of the state that is eventually used to
get the minterm is maintained by tacking a 0 or I one

to the end of the generated minterm(s).

;; VARIABLES: fun -- the function generated by SEQUENTIAL-TEST

by either substituting 0 or 1 into the
GET-VECTOR-FUNCTION function depending on
the fault being diagnosed

state-info -- list of lists containing the state
variables and their current and

reset values

(define (get-terms fun state-info)

(let* ((vi (try-current-state fun state-info)))

(if (null? v1)

(try-with-reset fun state-info)

B-33

(cons vi '(0)))))

;; FUNCTION: try-current-state

;; CALLING FUNCTION(S): get-terms

;; CALLED FUNCTION(S): initializef

;; PURPOSE: Attempts to generate minterms for vectors using the

current states of the memory elements.

;; VARIABLES: fun -- the function generated by SEQUENTIAL-TEST

by either substituting 0 or 1 into the

GET-VECTOR-FUNCTION function depending on
the fault being diagnosed

state-info -- list of lists containing the state
variables and their current and

reset values

(define (r;-',urrqnt-state fun dtate-info)

(let* ((mem-nodes (car state-info))

(init-vals (car (cdr state-info)))

(init-fun (initializef fun mem-nodes init-vals)))
init-fun))

;; FUNCTION: try-with-reset

;; CALLING FUNCTION(S): get-terms

;; CALLED FUNCTION(S): initializef

;; PURPOSE: Attempts to generate minterms using the reset state
of the circuit.

;; VARIABLES: fun -- the function generated by SEQUENTIAL-TEST

by either substituting 0 or 1 into the

B-34

GET-VECTOR-FUNCTION function depending on
the fault being diagnosed

state-info -- list of lists containing the state
variables and their current and

reset values

(define (try-with-reset fun state-info)

(newline)

(newline)
(display "NO VECTOR CAPABLE USING CURRENT STATE, TRYING RESET

STATE.")

(newline)

(newline)

(let* ((me%-nodes (car stati-info))
(reset-vals (car (cddr state-info)))
(reset-fun (initializef fun mem-nodes reset-vals)))

(if (null? reset-fun) nil

(begin
(display "RESET CIRCUIT PRIOR TO APPLYING TEST

VECTOR.")

(newline)

(cons reset-fun '(1))))))

;; FUNCTION: initializef

;; CALLING FUNCTION(S): try-current-state, try-with-reset
intializef

;; CALLED FUNCTION(S): replace-with-one, replace-with-zero
intializef

;; PURPOSE: This function substitutes a specified list of nodes
in a given function with specified values. The order
of the list of nodes corresponds to the order of the
values to be substituted in.

;; VARIABLES: func -- the function to substitute in

nodes -- the nodes to be replaced

B-35

values -- the values to place in the function

(dafine (initializef func nodes values)

(if (equal? nodes nil)

func

(begin

(if (equal? (car values) I)

(initializef (replace-with-one func (list (car nodes)))

(cdr nodes) (cdr values))

(initializef (replace-with-zero func (list (car nodes)))
(cdr nodes) (cdr values))))))

;; FUNCTION: remove-mem-nodes

;; CALLING FUNCTION(S): sequential-test

;; CALLED FUNCTION(S): remove, remove-mem-nodes. bar

;; PURPOSE: The original list of input values includes the

current state variables of the circuit. These must

be removed before this list is used to supplement the
minterm representing the test vector. This function
is a generic removal function to do so.

;; VARIABLES: mem-nodes -- the nodes to go

in-nodes -- the list to remove from

(define (remove-mem-nodes mem-nodes in-nodes)

(if (null? mem-nodes) in-nodes

(let* ((remi (remove (car mem-nodes) in-nodes))
(rem2 (remove (bar (car mem-nodes)) remi)))

(remove-mem-nodes (c,lr mem-nodes) rem2))))

B-36

;; FUNCTION: init-eqs

,; CALLING FUNCTION(S): sequential-test

;; CALLED FUNCTION(S): init-eqsl

;; PURPOSE: This function initializes the output equations using
the state of the memory elements that was used to
get the test vector minterm. This is a necessary
step prior to comparing for a fault condition so that
the configuration of the circuit prior to vector

application is the compared configuration.

,, VARIABLES: out-eqs -- the list of circuit outputs

state-info -- list of lists containing the current
state variables and their present and
reset states

init-val -- a variable that was tagged on the end
of the test-vector minterm to maintain

; , the identity of the state used to

generate the minterm

(define (init-eqs out-eqs state-info init-val)

(if (equal? init-val 0)
(init-eqsl out-eqs (car state-info) (cadr state-info))
(init-eqsl out-eqs (car state-info) (caddr state-info))))

;; FUNCTION: init-eqsl

;; CALLING FUNCTION(S): init-eqs

;; CALLED FUNCTION(S): make-sop, initializef

;; PURPOSE: This function does the actual initialization using
the values passed to it by INIT-EQ.

;; VARIABLES: out-eqs -- circuit output equations

B-37

state-vars -- the variables to replace

init-vals -- the values to replace them with

(define (init-eqsl out-eqs state-vars init-vals)

(if (null? out-eqs) nil

(let* ((fun (make-sop (list (car out-eqs))))

(init-fun (initializef fun state-vars init-vals)))
(cons init-fun (init-eqsl (cdr out-eqs) state-vars init-vals)))))

;; FUNCTION: get-res3

;; CALLING FUNCTION(S): sequential-test

;; CALLED FUNCTION(S): output-vector

;; PURPOSE: This function outputs the stuck-at-zero test vector

;; to the user and forms the terms required to later

compare based on the resulting outputs.

;; VARIABLES: vector -- the minterm representing the vector to be

applied

outputs -- a list of the circuit outputs

flag -- a flag used to avoid sending the "output
vector" routine more than once

(define (get-res3 vector outputs flag)

(if (null? outputs) nil

(begin
(if flag
(begin
(newline)
(writeln "APPLY THE FOLLOWING VECTOR TO TEZT A STUCK-AT-ZERO CONDITION!)

(writeln "ON THE SUSPECTED FAULTY LINE:")

B-38

(newline)

(output-vector vector)

(newline)
(writeln "NEXT YOU WILL BE PROMPTED FOR THE RESULTING OUTPUT VALUES.")
(writeln "RECALL THAT OUTPUTS OF SEQUENTIAL ELEMENTS ARE NOW CONSIDERED,)

(writeln "TO BE PRIMARY OUTPUTS.")))
(display "INPUT THE RESULT FROM OUTPUT ")

(display (car outputs))

(writeln " -- 0 or 1:")
(let* ((ans (read)))

(if (equal? ans 0)
(append (list (cons (car outputs) vector)) (get-res3

vector

(cdr outputs) nil))
(append (list (cons (bar (car outputs)) vector)) (get-res3

vector (cdr outputs) nil)))))))

;; FUNCTION: get-res4

;; CALLING FUNCTION(S): sequential-test

;; CALLED FUNCTION(S): output-vector

;; PURPOSE: This function outputs the stuck-at-one test vector

to the user and forms the terms required to later
compare based on the resulting outputs.

;; VARIABLES: vector -- the minterm representing the vector to be

applied

outputs -- a list of the circuit outputs

flag -- a flag used to avoid sending the "output
vector" routine more than once

(define (get-res4 vector outputs flag)
(if (null? outputs) nil

(begin

(if flag
(begin

B-3q

(newline)

(writeln "APPLY THE FOLLOWING VECTOR TO TEST A STUCK-AT-ONE CONDITION")
(writeln "ON THE SUSPECTED FAULTY LINE:")
(newline)
(output-vector vector)
(newline)
(writeln "NEXT YOU WILL BE PROMPTED FOR THE RESULTING OUTPUT VALUES.")
(writeln "RECALL THAT OUTPUTS OF SEQUENTIAL ELEMENTS ARE NOW CONSIDERED")
(writeln "TO BE PRIMARY OUTPUTS.")))
(display "INPUT THE RESULT FROM OUTPUT ")
(display (car outputs))
(writeln "... 0 or 1:")
(let* ((ans (read)))
(if (equal? ans 0)

(append (list (cons (car outputs) vector))
(get-res4 vector (cdr outputs)

nil))
(append (list (cons (bar (car outputs))

vector)) (get-res4 vector
(cdr outputs) nil)))))))

13-40

;; FILENAME: test2.s

;; FILES REQUIRED FOR CALLED FUNCTIONS: menu.s, testl.s, utils2.s

;; FUNCTION: bridge-fault-com

;; CALLING FUNCTION(S): menu

;; CALLED FUNCTION(S): get-fault-variables, cut-node,
get-vector-function, combinational-testb

mksops, bridged?, output-resultsb
bridge-fault-com, menu

;; PURPOSE: This function performs diagnosis of bridge faults in

combinational circuits. The user is prompted for the

variables labeling the suspected bridged lines using

GET-FAULT-VARIABLES. CUT-NODE is used, as before, to

isolate the suspected faulty lines. The equations

descriptions are combined using GET-VECTOR-FUNCTION.

COMBINATIONAL-TESTB generates vectors, forms the

terms to be compared for diagnosis and passes them
back to the calling routine. BRIDGED? does the

comparison to the output equations to determine if

a fault has occurred. The results are then provided

9; to the user.

; VARIABLES: intermediate-format -- the individual CCEs

internal-nodes -- a list of the internal circuit

nodes

output-nodes a list of the output nodes

input-nodes -- a list of the input nodes

output-equations -- a list of the circuit's output

equations

. . 9 ~ 9 999 9 9 3 999 99 9 9 9 9 9 9 9 99 9 9 9 9 9 9 9 9 9

ri-t

(define (bridge-fault-com intermediate-format internal-nodes

output-nodes input-nodes output-equations)

(newline)
(let* ((fault-variables (get-fault-variables))

(new-formati (cut-node intermediate-format input-nodes

output-equations (car fault-variables)))
(new-format2 (cut-node new-formatl input-nodes

output-equations (car (cdr fault-variables))))
(vector-function (get-vector-function new-format2

internal-nodes output-nodes output-equations))
(test-results (combinational-testb vector-function

input-nodes output-nodes output-equations))
(out-eqs2 (mksops output-equations)))

(if (null? test-results) (writeln "NO TEST POSSIBLE FOR THIS

COMBINATION.")
(let* ((results (bridged? test-results fault-variables

intermediate-format out-eqs2)))
(output-resultsb results fault-variables)))

(if (againb?) (bridge-fault-com intermediate-format

internal-nodes
output-nodes input-nodes output-equations)

(begin

(read-line)
(menu)))))

;; FUNCTION: get-fault-variables

;; CALLING FUNCTION(S): bridge-fault-com, bridge-fault-seq

;; CALLED FUNCTION(S): none

;; PURPOSE: This function prompts the user for the suspected

fault nodes and reads them.

;; VARIABLES: none

(define (get-fault-variables)

(newline)

H-.42

(writeln "ENTER THE VARIABLES THAT LABEL THE SUSPECTED FAULTY

LINES.")
(writeln "ENTRIES SHOULD BE MADE ONE AT A TIME WITH <rtn>

TYPED")

(writeln "BETWEEN EACH ENTRY.")

(newline)
(let* ((inputi (read))

(inputs (cons inputl (list (read)))))

(newline)
(display "PROCESSING

(newline)

(newline)

inputs))

,; FUNCTION: combinational-testb

,; CALLING FUNCTION(S): bridge-fault-com

,; CALLED FUNCTION(S): replace-with-zero, replace-with-one,

mult, supplement, get-result

,; PURPOSE: This function generates a test vector, prompts the
user to apply it and forms the terms to be later
compared to output equations based on the resulting

output values.

,; VARIABLES: function -- the test vector function generated by

get-vector-function

input-nodes -- list of circuit inputs

output-nodes -- list of circuit outputs

output-eqs -- list of circuit output equations

(define (combinational-testb function input-nodes output-nodes

output-eqs)
(let* ((z (replace-with-zero function '(TEST)))

(o (replace-with-one function ' (TEST)))

(zo (mult z o))

1-43

(vector (car zo))

(vector2 (supplement vector input-nodes)))

(if (null? zo) nil

(get-result vector2 output-nodes t))))

;; FUNCTION: get-result

;; CALLING FUNCTION(S): combinational-testb, get-result

;; CALLED FUNCTION(S): output-vector, get-result

;; PURPOSE: This function outputs the test vector to the user and

accumulates the terms to be later compared to output
equations.

;; VARIABLES: vector -- the minterm representing the test vector

outputs -- list of circuit outputs

flag -- a flag used to avoid sending the "output
vector" message more than once

(define (get-result vector outputs flag)
(if (null? outputs) nil

(begin

(newline)

(if flag

(begin

(newline)
(writeln "APPLY THE FOLLOWING VECTOR TO TEST A FAULT CONDITION")

(writeln "ON THE SUSPECTED FAULTY LINES:")

(newline)

(output-vector vector)

(newline)))

(display "INPUT THE RESULT FROM OUTPUT ")

(display (car outputs))
(writeln . -- 0 or 1:")

(let* ((ans (read)))
(if (equal? ans 0)

[3-44

(append (list (cons (car outputs) vector)) (get-result

vector (cdr outputs)

nil))

(append (list (cons (bar (car outputs)) vector))

(get-result vector (cdr outputs) nil)))))

;; FUNCTION: bridged?

;; CALLING FUNCTION(S): bridge-fault-com, bridge-fault-seq

bridged?
;;

;; CALLED FUNCTION(S): mult, complement, related?, bridged?

;; PURPOSE: This function does the comparison with the output

;quations to determine if the suspected variables
are bridged.

;; VARIABLES: test-results -- the terms formed in

COMBINATIONAL-TESTB based on the

test vector minterm and resulting

output

fault-vars -- the suspected fault nodes

inter-form -- the original individual CCEs

output-eqs -- a list of the circuit's output

equations

;to be determined at fault either node must be related logically to the

;output in question and the output must be in error

(define (bridged? test-results fault-vars inter-form output-eqs)
(if (or (null? output-eqs) (null? test-results))

nil
(if (and (null? (mult (complement (car output-eqs))

(list (car test-results))))

(or (related? (car fault-vars) (car output-eqs) inter-form)

(related? (car (cdr fault-vars)) (car output-eqs)

inter-form)))

'(B)

B-45

(bridged? (cdr test-results) fault-vars inter-form

(cdr output-eqs)))))

;; FUNCTION: output-resultsb

;; CALLING FUNCTION(S): bridge-fault-com

;; CALLED FUNCTION(S): none

;; PURPOSE: This function provides the user with the results of

the diagnosis.

;; VARIABLES: results -- results determined in BRIDGED? routine

fault-vars -- suspected fault nodes

(define (output-resultsb results fault-vars)

(newline)

(newline)
(display "LINES ")
(display (car fault-vars))

(display " AND ")

(display (car (cdr fault-vars)))
(if (member 'B results)

(writeln " ARE BRIDGED.")

(writeln " ARE NORMAL.")))

;; FUNCTION: againb?

;; CALLING FUNCTION(S): bridge-fault-com, bridge-fault-seq

;; CALLED FUNCTION(S): none

;; PURPOSE: This function gives the user the opportunity to test

the same circuit for a bridge fault on two other

nodes.

H-46

;; VARIABLES: none

(define (againb?)
(newline)
(writeln "WOULD YOU LIKE TO RUN A BRIDGE FAULT TEST ON ANOTHER")

(writeln "SET OF NODES IN THE CIRCUIT?")

(writeln "TYPE y<rtn> OR n<rtn>.")

(let ((answer (read)))
(if (equal? answer 'y) t

nil)))

B-47

;; FILENAME: test2s.s

'9

;; FILES REQUIRED FOR CALLED FUNCTIONS: boolean.s, testl.s,

test2.s, menu.s, testls.s, utils2.s

* ,,,,, P13lp~~)~ 3~~p3 3*Ipp33*p 333pp~pp**9 3*pjj* ~ * 993p

;; FUNCTION: bridge-fault-seq

;; CALLING FUNCTION(S): menu, bridge-fault-seq

;; CALLED FUNCTION(S): get-fault-variables, cut-node,
get-state-info, get-vector-function,
sequential-testb, init-eqs, bridged?,

output-resultsb, bridge-fault-seq, menu

;; PURPOSE: This function performs diagnosis of bridge faults in

sequential circuits. It does this much in the same
way as BRIDGE-FAULT-COM, only using the addizional

;; state information to generata test vectors as
described in SINGLE-FAULT-SEQ.

;; VARIABLES: intermediate-format -- the list of individual CCEs

internal-nodes -- list of circuit internal nodes

output-nodes list of circuit output nodes

input-nodes -- list of circuit input nodes

output-equations -- list of circuit output

equations

(define (bridge-fault-seq intermediate-format internal-nodes

output-nodes input-nodes output-equations)
(newline)
(let* ((fault-variables (get-fault-variables))

(new-formati (cut-node intermediate-format input-nodes

output-equations (car fault-variables)))

B-48

(new-format2 (cut-node new-formatl input-nodes
output-equations (car (cdr fault-variables))))

(state-info (get-state-info))
(garb (display "PROCESSING
(vector-function (get-vector-function new-format2

internal-nodes output-nodes
output-equations))

(test-results (sequential-testb vector-function
state-info input-nodes output-nodes

output-equations))
(out-eqs2 (init-eqs output-equations state-info

(cadr test-results))))

(if (null? test-results) (writeln "NO TEST POSSIBLE FOR THIS

COMBINATION.")
(let* ((results (bridged? (car test-results)

fault-variables intermediate-format out-eqs2)))

(output-resultsb results fault-variables)))

(if (againb?) (bridge-fault-seq intermediate-format

internal-nodes output-nodes input-nodes

output-equations)
(begin

(read-line)

(menu)))))

;; FUNCTION: sequential-testb

;; CALLING FUNCTION(S): bridge-fault-seq

;; CALLED FUNCTION(S): replace-with-zero, replace-with-one, mult,

get-terms, remove-mem-nodes, supplement,
get-result-s

;; PURPOSE: This function generates a test vector, prompts the

user to apply it and forms the terms to be used later
in comparison with the output equations.

;; VARIABLES: function -- the function generated by

GET-VECTOR-FUNCTION

state-info -- a list of lists containing the
3; current state nodes and their current

B-49

and reset states

input-nodes -- circuit inputs

output-nodes -- circuit outputs

output-eqs -- circuit output equations

(define (sequential-testb function state-info input-nodes

output-nodes output-eqs)

(let* ((mem-nodes (car state-info))

(z (replace-with-zero function '(TEST)))

(o (replace-with-one function ' (TEST)))
(zo (mult z o))

(terms (get-terms zo state-info))
(vector (caar terms)))

(if (null? vector) nil

(let* ((input-nodes2 (remove-mem-nodes mem-nodes input-nodes))
(vector2 (supplement vector input-nodes2)))

(cons (get-result-s vector2 output-nodes t)

(cdr terms))))))

;; FUNCTION: get-result-s

;; CALLING FUNCTION(S): sequential-testb, get-result-s

;; CALLED FUNCTION(S): output-vector, get-result-s

;; PURPOSE: This function directs the user to apply the test
vector and it then forms the terms to be compared
later to output equations.

;; VARIABLES: vector -- the minterm representing the test vector

outputs -- circuit outputs

flag -- a flag used to avoid sending the "output
vector" message more than once

B-50

(define (get-result-s vector outputs flag)
(if (null? outputs) nil

(begin

(if flag

(begin

(newline)
(writeln "APPLY THE FOLLOWING VECTOR TO TEST FOR A FAULT

CONDITION")
(writeln "ON THE SUSPECTED FAULTY LINES:")

(newline)
(output-vector vector)

(newline)))

(display "INPUT THE RESULT FROM OUTPUT ")
(display (car outputs))
(writeln " -- 0 or 1:")
(let* ((ans (read)))

(if (equal? ans 0)
(append (list (cons (car outputs) vector)) (get-result-s

vector

(cdr outputs) nil))
(append (list (cons (bar (car outputs)) vector))

(get-result-s vector (cdr outputs) nil)))))))

l3-51

;; FILENAME: test3.s

;; FILES REQUIRED FOR CALLED FUNCTIONS: testl.s, test2.s, menu.s,

boolean.s, utils2.s

;; FUNCTION: multiple-fault-com

;; CALLING FUNCTION(S): menu, multiple-fault-com

;; CALLED FUNCTION(S): get-mfault-variables, cut-nodes,

get-vector-function, combinational-testm,
mksops, faulty?, output-resultsm,
multiple-test-com, againm?, menu

;; PURPOSE: This function performs diagnosis of multiple stuck-at

faults in a combinational circuit. It is much like
the SINGLE-FAULT-COM routine with the additional

software required to handle multiple suspected faulty
nodes and their suspected fault values as specified

by the user. GET-MFAULT-VARIABLES obtains the
suspected faulty nodes. GET-VECTOR-FUNCTION and
COMBINATIONAL-TESTM together generate the test
vector. The results of application are analyzed by

FAULT? and then output to the user.

;; VARIABLES: intermediate-format -- the system of individual

CCEs

internal-nodes -- list of circuit internal nodes

output-nodes -- list of circuit output nodes

input-nodes -- list of circuit inputs

output-equations -- list of circuit output
equations

B-52

(define (multiple-fault-com intermediate-format internal-nodes

output-nodes input-nodes output-equations)

(newline)

(let* ((fault-variables (get-mfault-variables))

(garb (display "PROCESSING))

(new-format (cut-nodes intermediate-format input-nodes

output-equations fault-variables)))

(if (null? new-format)
(writeln "NO TEST POSSIBLE FOR THIS COMBINATION.")

(let* (

(vector-function (get-vector-function new-format

internal-nodes output-nodes
output-equations))

(test-results (combinational-testm vector-function

input-nodes output-nodes output-equations
fault-variables))

(out-eqs2 (mksops output-equations)))

(if (or (null? test-results) (null? vector-function))

(writeln "NO TEST POSSIBLE FOR THIS COMBINATION.")

(let* ((results (faulty? test-results fault-variables
intormediate-format out-eqs2)))

(output-resultsm results fault-variables)))

(if (againm?) (multiple-fault-com intermediate-format

in t.rnal-nodes
output-nodes input-nodes output-equations)

(begin

(read-line)

(menu)))))))

;; FUNCTION: get-mlault-variables

CALLING FUNCTION(S): multiple-test-com

;; CALLED FUNCTION(S): get-vars

;; PURPOSE: This function asks the user to provide the number of

; , fault nodes and then calls GET-VARS to read the

nodes.

;; VARIABLES: none

1-53

(define (get-mfauilt-variables)

(newline)

(writeln "ENTER THE NUMBER OF VARIABLES SUSPECTED TO BE
FAULTY.")

(writeIn "FOLLOW TUE RESP7NSE WITH <rtn>:")
(get-vars (read) t))

;; FUNCTION: get-vars

;; CALLING FUNCTION(S): get-mfault-variables, get-vars

CALLED FUNCTION(S): get-vars

PURPOSE: This function prompts the user for the fault nodes

;; and reads them.

VARIABLES: num -- a value obtained from the user so the

routine knows when to stop reading variables

flag -- this flag avoids sending the promptin'

message more than once

(define (get-vars num flag)

(if (equal? num 0) nil

(begin

(if flag

(begin

(writeln "ENTER THE VARIABLES THAT LABEL THE FAULTY LINES.

ENTRIES")

(writeln "SHOULD BE MADE ONE AT A TIME WITH <rtn> TYPED AFTER

EACH")

(writeln "ENTRY.")))
(cons (read) (get-vars (subi num) nil)))))

FUNCTION: cut-nodes

;; CALLING FUNCTION(S): multiple-fault-com

;; CALLED FUNCTION(S): cut-node2, cut-nod-

;; PURPOSE: This function is much like CUT-NODE with the

exception that is cuts scveral suspected faulty
nodes and replaces them with a number to maintain

their identities.

;; VARIABLES: ccf-list -- the system of individual CCEs

input-nodes -- circuit inputs

output-equations -- circuit output equations

fault-variables -- the suspected fault nodes

(define (cut nodes ccf-list input-nodes output-equations

fault-variables)

(if (null? fault-variables) ccf-list

(let* ((repiacement-var (length fault-variables))

(new-ccf (cut-node2 cod-list input-nodes

output-equations
(car fault-variables) replacement-var)))

(if (null? new-ccf) nil
(cut-nodes new-ccf input-nodes output-equations

(cdr faul-variables))))))

33333,, , 33,3,,D 3pp *333, 333, 3333, 3333, 3, 333333, 333333333,3333 ,3

;; FUNCTION: cut-node2

;; CALLING FUNCTION(S): cut-nodes

CALLED FUNCTION(S): check-list, replace-variable, delete-ccf

PURPOSE: This function cuts one variable at a time.

VARIABLES: ccf-list -- individual CCEs

input-nodes -- circuit inputs

13-55

output-equations -- circuit output equations

fault-variable -- a suspected fault node from

CUT-NODES

replacement-var -- the item to replace tile fault

node with, in this case a number

(define (cut-node2 ccf-list input-nodes output-equations

fault-variable replacement-var)
(if (null? ccf-list)

(if (check-list input-nodes fault-variable)

(replace-variable output-equations replacement-var

fault-variable)
(replace-variable (delete-ccf output-equations

fault-variable)

replacement-var fault-variable))
(if (check-list input-nodes fault-variable)

(replace-variable ccf-list replacement-var fault-variable)
(replace-variable (delete-ccf ccf-list fault-variable)

replacement-var fault-vaiiable))))

FUNCTION: combinational-testm

CALLING FUNCTION(S): multiple-fault-com

;; CALLED FUNCTION(S): get-fault-values, rep-function,

supplement, get-result

PURPOSE: This function generates a test vector and sends it

to the user for application. It also forms the
* , terms used later in comparison ti the output

equations.

VARIABLES: function -- the function generated by

GET-VECTOR-FUNCTION

input-nodes -- circuit inputs

1;;5

output-nodes -- circuit outputs

output-eqs -- circuit output equations

fault-variables -- the suspected fault nodes

(define (combinational-testm function input-nodes output-nodes
output-eqs fault-variables)

(newline)
(let*((fault-values (get-fault-values fault-variables))

(new-function (rep-function function fault-values))
(vector (car new-function))
(vector2 (supplement vector input-nodes)))

(if (null? new-function) nil

(get-result vector2 output-nodes t))))

9999999:99 :::999 999 :::9* :9 : : :99*:9:9:9: 99:9:9:: 9:: 9::: 9: 9,,,

FUNCTION: get-fault-values

;; CALLING FUNCTION(S): combinational-testm, get-fault-values

;; CALLED FUNCTION(S): get-fault-values

;; PURPOSE: This function prompts the user for the values that

he/she suspects the nodes to be stuck at.

;; VARIABLES: fault-variables -- suspected fault nodes

(define (get-fault-values fault-variables)
(if (null? fault-variables) nil

(begin

(display "ENTER THE SUSPFI" LJLT VALUE FOR VARIABLE ')

(display (car fault-var ..L_))

(display ":")
(newl ̂ne)

(cons (read) (get-fault-values (cdr fault-variables))))))

99999::::::9 :::99999999,9999,,,,: ,, 9999:9:: 9: 999999: 9: 9:1-W:

;;-5

;; FUNCTION: rep-function

;; CALLING FUNCTION(S): combinational-testm, rep-function

;; CALLED FUNCTION(S): replace-with-zero, replace-with-one

;; PURPOSE: This function replaces the numbers in the test
vector function generaLed by GET-VECTOR-FUNCTION

with the suspected stuck-at values specified by the
user.

,; VARIABLES: function -- the function generated by GET-VECTOR-

FUNCTION

fault-vals -- the suspected stuck-at values

(define (rep-function function fault-vals)
(if (null? fault-vals) function

(let* ((replaced-function

(cond ((equal? (car fault-vals) 0)
(replace-with-zero function

(list (length fault-vals))))

(else

(replace-with-one function

(list (length fault-vals)))))))

(rep-function replaced-function (cdr fault-vals)))))

;; FUNCTION: faulty?

,; CALLING FUNCTION(S): multiple-fault-com, faulty?

;; CALLED FUNCTION(S): mult, complement, relatedm?, faulty?

;; PURPOSE: This function compares the terms formed in

GET-RESULT with the appropriate output equations.

;; VARIABLES: test-results -- the terms formed by GET-RESULT

;; fault-vars -- the suspected fault nodes

inter-form -- the original system of individual

13-5s

CCEs

output-eqs -- circuit output equations

(define (faulty? test-results fault-.vars inter-form output-eqs)
(if (or (null? output-eqs) (null? test-results)) nil

(if (and (null? (mult (complement (car output-eqs))

(list (car test-results))))

(relatedm? fault-vars (car output-eqs) inter-form))

'(M)

(faulty? (cdr test-results) fault-vars inter-form
(cdr output-eqs)))))

;; FUNCTION: relatedm?

;; CALLING FUNCTION(S): faulty?, relatedm?

;; CALLED FUNCTION(S): related?, relatedm?

PURPOSE: This function tests the accessibility of the fault
variables to the output in question.

VARIABLES: fault-vars -- suspected fault variables

output-eq -- a circuit output equation

inter-form -- the system of CCEs

::::::::::::::w:3::333:3:3333333:3333:3333333333333:3:,:::::3:33::3

(define (relatedm? fault-vars output-eq inter-form)
(if (null? fault-vars) nil

(if (related? (car fault-vars) output-eq inter-form)

t

(relatedm? (cdr fault-vars) output-eq inter-form))))

33,33333 3333333 333333, 33333 3-3 9 3 ~ 3 3 3 , 3 3 3 3 3 3 3 3

;; FUNCTION: output-resultsm

;; CALLING FUNCTION(S): multiple-fault-com

;; CALLED FUNCTION(S): show-fault-lines

,; PURPOSE: This function sends the diagnoscic results to the
user.

;; VARIABLES: results -- the results as generated by FAULTY?

fault-vars -- suspected fault nodes

(define (output-resultsm results fault-vars)

(newline)
(newline)

(display "THE FOLLOWING LINES: ")

(show-fault-lines fault-vars)

(if (member 'M results)
(writeln "ARE STUCK AT THE SUSPECTED VALUES.")

(writeln "ARE NOT STUCK AT THE SUSPECTED VALUES.")))

;; FUNCTION: show-fault-lines

;; CALLING FUNCTION(S): output-resultsm, show-fault-lines

,; CALLED FUNCTION(S): show-fault-lines

;; PURPOSE: This function sends the suspected faulty lines to the

screen.

;; VARIABLES: fault-vars -- suspected fault nodes

(define (show-fault-lines fault-vars)

(if (null? fault-vars) nil

(begin
(display (car fault-vars))

(display "

B1 60

(show-fault-lines (cdr fault-vars)))))

;; FUNCTION: againm?

CALLING FUNCTION(S): multiple-fault-com

;; CALLED FUNCTION(S): none

PURPOSE: This function provides the user with the capability
to test the same circuit for a different set of

fault nodes.

;; VARIABLES: none

9933393933999333333333333333333333:3339:9393333333393,,3, 933::::339

(define (againm?)

(newline)

(writeln "WOULD YOU LIKE TO RUN A MULTIPLE FAULT TEST ON ANOTHER

SET OF NODES IN THE CIRCUIT?")
(writeln "TYPE y<rtn> OR n<rtn>.")

(let ((answer (read)))

(if (equal? answer 'y) t
nil)))

13-61

;; FILENAME: test3s.s

;; FILES REQUIRED FOR CALLED FUNCTIONS: testls.s, test2s.s,

test3.s, test2.s

;; FUNCTION: multiple-fault-seq

;; CALLING FUNCTION(S): menu, multiple-fault-s

;; CALLED FUNCTION(S): get-mfault-variables, cut-nodes,

get-state-info, get-vector-function,

sequential-testm, init-eqs, faulty?,

output-resultsm, multiple-fault-seq,

againm?

;; PURPOSE: This function performs diagnosis of multiple stuck-at
faults in sequential circuits. The function operates

much like MULTIPLE-FAULT-COM with the exception that
the current state of the circuits current state

; , variables must either be known or set by resetting

; * the circuit.

;; VARIABLES: intermediate-format -- system of circuit CCEs

internal-nodes -- circuit internal nodes

output-nodes -- circuit outputs

input-nodes -- circuit inputs

output-equations -- circuit output equations

(define (multiple-fault-seq intermediate-format internal-nodes

output-nodes input-nodes output-equations)

(newline)

(let* ((fault-variables (get-mfault-variables))

(garb (display "PROCESSING))

B-62

(new-format (cut-nodes intermediate-format input-nodes
output-equations fault-variables)))

(if (null? new-format)

(writeln "NO TEST POSSIBLE FOR THIS COMBINATION.")
(let* (

(state-info (get-state-info))

(garb (display "PROCESSING ")
(vector-function (get-vector-function new-format

internal-nodes output-nodes output-equations))

(test-results (sequential-testm vector-function

state-info input-nodes output-nodes output-equations
fault-variables))

(out-eqs2 (init-eqs output-equations state-info

(cadr test-results))))
(if (or (null? test-results) (null? vector-function))

(writeln "NO TEST POSSIBLE FOR THIS COMBINATION.")

(let* ((results (faulty? (car test-results)

fault-variables intermediate-format out-eqs2)))

(output-resultsm results fault-variables)))

(if (againm?) (multiple-fault-seq intermediate-format

internal-nodes
output-nodes input-nodes output-equations)

(begin

(read-line)
(menu)))))))

FUNCTION: sequential-testm

CALLING FUNCTION(S): multiple-fault-seq

;; CALLED FUNCTION(S): get-fault-values, rep-function, get-terms

remove-mem-nodes, supplement, get-result

;; PURPOSE: This function generates a test vector, prompts the

user to apply the vector and forms the terms that
are later compared to the output equations to

determine if a fault has occurred.

VARIABLES: function -- the function generated by GET-VECTOR-

FUNCTION

B-63

state-info -- the list of lists that contains the
current state variables of the
circuit along with their current

state and reset state values

input-nodes -- circuit inputs

output-nodes -- circuit outputs

output-rqs -- circuit output equations

fault-variables -- suspected fault nodes

(define (sequeLtial-testm function state-info input-nodes
outnut-nodes output-eqs fault-variables)

(newline)
(let*((fault-values (get-fault-values fault-variables))

(mem-nodes (car state-info))

(new-function (rep-function function fault-values))
(terms (get-terms new-function state-info))
(vector (caar terms)))

(if (null? vector) nil
(let* ((input-nodes2 (remove-mem-nodes mem-nodes

input-nodes),
(vector2 (supplement vector input-nodes2)))

(cons (get-result vector2 output-nodes t)

(cdr terms))))))

B-64

;; FILENAME: utils.s

;; NOTE: The functions in this file have been borrowed from

Kainec (18:262-266, 266, 272).

,:,,,:,:,:;; GET NODES PROCEDURES ;;;;;;;;;;;;;;;;;;
;; (GET-INTERNAL-NODES prefix-list)

;; Parameters:
;; prefix-list - a list of the form: ((eq ------------)

(le ------------)
'9 :)

-- GET-INTERNAL-NODES works by getting first all of the nodes in
;; the circuit and subtracting the input nodes and the output
;; nodes.

-- GET-ALL-NODES returns all of the nodes in the circuit.
- GET-INPUT-NODES returns the input nodes of the circuit. GET-

;; SUBLIST subtracts the input nodes from all of the nodes
;; leaving the internal nodes and output nodes (NODES-LESS-

;; INPUT-NODES).
- GET-OUTPUT-NOr' returns the output nodes of the circuit.

;; GET-SUBLISI _,tracts the output nodes from the NODES-LESS-
;; INPUT-NODES leaving the INTERNAL-NODES.

(define (get-internal-nodes prefix-list)

(let* ((all-nodes (get-all-nodes prefix-list))

(nodes-less-input-nodes (get-sublist all-nodes
(get-input-nodes prefix-list)))

(internal-nodes (get-sublist nodes-less-input-nodes

(get-output-nodes prefix-list))))

internal-nodes))

;; (GET-ALL-NODES prefix-list)

B-65

;; Parameters:

;; prefix-list - a list of the form: ((eq ------------)

(le ------------)

-- GET-ALL-NODES calls GET-NODES which returns a list of all of
;; the nodes in the circuit. Since GET-NODES does not remove
;; duplicates of nodes, REMOVE-DUPLICATES is called to remove

;; duplicates in the list.

(define (get-all-nodes prefix-list)
(remove-duplicates (get-nodes prefix-list)))

;; (GET-INPUT-NODES prefix-list)

;; Parameters:

;; prefix-list -- a list of the form: ((eq ------------)
(le ------------

;: :)

-- Accepts a list in prefix form and returns a list of the nodes
;; which are outputs for the given system of equations. The

equations represent a combinationai circuit.

-- Input nodes are all nodes which occur only on the right h& a

;; side of the system of equations.
-- GET-INPUT-NCDES takes each equation, and determines the

;; symbols on the left hand side by calling GET-NODES-ON-LEFT.

GET-NODES-ON-RIGHT returns the nodes on the right hand side.
The nodes on the left are then subtracted from the nodes on

;; the right (using GET-SUBLIST) yielding the input aodes. A

;; list of the input nodes is returned.

(define (get-input-nodes prefix-lizt)

(let ((nodes-on-left (remove-duplicates

(get-nodes-on-left prefix-list)))

(nodes-on-right (remove-duplicates

(get-nodes-in-right prefix-list))))

(get-sublist nodes-on-right nodes-on-left)))

11-66

;; (GET-OUTPUT-NODES prefix-list)

;; Parameters:

prefix-list -- a list of the form: ((eq ------------)
(le ------------)

-- Accepts a list in prefix form and returns a list of the nodes
which are outputs for the given system of equations. The

;; equations represent a combinational circuit.
-- Output nodes are all nodes which occur only on the left hand

side of the system of equations.
-- GET-OUTPUT-NODES takes the equations, and determines the

symbols on the left hand side by calling GET-NODES-ON-LEFT.

GFT-NODES-ON-RIGHT determines the nodes on the right hand
;; side. The nodes on the right are then subtracted from the
;; nodes on the left (using GET-SUBLIST) yielding the output

nodes. A list of the output nodes is returned.

(define (ge-output-nodes prefix-list)

(let ((nodes-on-left (remove-duplicates

(get-nodes-on-left prefix-list)))

(nodes-on-right (remove-duplicates
(get-nodes-on-right prefix-list)))

(get-sublist nodes-on-left nodes-on-right)))

(GET-SUBLIST list-i list-2)

Parameters:

list-I -- an arbitrary list
list-2 -- an arbitrary list

-- GET-SUBLIST takes two lists and returns the items in list-I
that are not members of list-2.

-- Duplicates are removed from the returned list.

(define (get-sublist list-i list-2)
(cond ((null? list-i) '())

B. 67

the first element of list-1 is an element of list-2
((member (car list-i) list-2)
(get-sublist (zdr list-i) list-2))

the first element of list-i is not an ilement of list-2
(else

(remove-duplicates

(cons (car list-i) (get-sublist (cdr list-i) list-2))))))

;; (GET-NODES-ON-RIGHT prefix-list)

;; Parameters:

prefix-list -- a list of the form: ((Aq ------------)
(le ------------)

; ; :)

-- GET-NODES-ON-RIGHT gets nodes on the right side of the

equations.
- - GET-NODES is used to get the nodes from the right hand side

of the prefix-list. A list of nodes is returned.
-- Note: Duplicates are NOT removed from the list.

(define (get-nodes-on-right prefix-list)

(if (null? prefix-list)

,()

(append (get-nodes (caddar prefix-list))
(get-nodes-on-right (cdr prefix-list)))))

;; (GET-NODES-ON-LEFT prefix-list)

;; Parameters:

;; prefix-list -- a list of the form: ((eq ------------)
(le ------------)

-- GET-NODES-ON-LEFT gets nodes on the left side of the

equation.

1B-68

-- GET-NODES is used to get the nodes from the left hand side _f
;; the prefix-list. A list of nodes is returned.

-- Note: Duplicates are NOT removed from the list.

(define (get-nodes-on-left prefix-list)

(if (null? prefix-list)

,()

(append (get-nodes (cadar prefix-list))

(get-nodes-on-left (cdr prefix-list))>

;; (GET-NODES 1st)

;; Parameters:

;; 1st -- a list in prefix for.., i.e., (+ (* A B) (NOT C))

-- GET-NODES accepts a list in prefix form and returns a list of
;; all of the symbols in the list which are atoms, but are not

;;5 s usLn Jbuls.
-- TOKEN-SYMBOL? is used to determine if an atom is a token

symbol.
-- GET-NODES extracts atoms which are included in nested lists.

(define (get-nodes 1st)
(cond ((null? 1st) '0)

if the list is atomic and not a token symbcl,

then return it in a list
((and (atom? 1st)

(not (token-symbol? 1st)))

(list Ist))

; if the list is atomic and a token symbol, return nil

((and (atom? ist)
(token-symbol? 1st))

'C))

; otherwise, break apart the list
(else

(let ((first-symbol (car 1st))

(rest-of-list (cdr 1st)))

; if the first symbol is an atom, determine
; the type of symbol--if it is a token

B-69

*sy-_bz;! ignore it; if it is not, thei. a .i

*it t., returned 1ist

m - ake a recursive call either way

(cond ((atam7 firwt-symbol)
(if (not (token-symbo!7 first-symbol))
(:-ons tirst-ayabol (get-nodes rest-of-list.''

(got-nod.. rest-of-!list)))

*otherwise. aake rec..rsive calls

append (get-nodes first-symbol)
(get-node. rest-of-1ist)) '))'

RKEMOVE-DUPLi'CATES 13t)

Parameters:

1st -- an arbitrary list

-REMOVE-OUPLICATES removes dupicates from the fAirst levael
of the input list.

(jefine (remove-duplicates ist

' cond ((null' 1st)
'0()

(member (car 1st) (cdr 1st))

(remove-duplicates (cdr ist)))

(else
(cons (car Ist) (reov-duplicates (cdr lst))))

;(ON-RIGHT-SIDE? node right-side)

Parameters:

;; node - a node in the circiiit
;; right-side - the right side of an equation

B-70

-- ON-RIGHT-SIDE? is a predicate procedure called by REPLACE-
;; NODE to determine if a given node is on the right-side of an
;; equation in prefix-form.

-- ON-RIGHT-SIDE? is called recursively until the NODE can be
;; tested for equality against every symbol on the RIGHT-SIDE.

(define (on-right-side? node right-side)
; the right-side is nil

(cond((null? right-side) '())

; the right-side is a symbol
C (symbol? right-side)
(if (eq? node right-side)

t
'())

the head of the right-side is a list

((list? (car right-side))
(or (on-right-side? node (car right-side))

(on-right-side? node (cdr right-side))))

the head of the right-side is a symbol
(else

(if (eq? node (car right-side))

t
(on-right-side? node (cdr right-side))))))

B-71

;; FILENAKE: ut~ls2.s

FILES REQUIRED FOR CALLED F.JM9C:CS - .sns

FUNCTION: replace-with-zero

CALLING FUNCTION(S): combinational-temt. squentia:-test.

combinationaI-tostb. seotia-Qst,

replace-with-zoro

CALLED FUNCTION(S): rep-comp'ement. roplace-with-zero. eoc n

PURPOSE: This function replaces a term (vhich :n o-r case ;s

usually a single variabie) in a functicn with zero.

First the complemented form of the term is deleted

using REP-COMPLEMENT. Deletion is the me as

multiplying by zin* uhich it what replacement does

with complemented terms. The remaining terms are

those that are uncomplemented and they can be

replaced by zero using the conjunctive el:=mnant.

VARIABLES: f -- function to replace in

term -- term or variable to replace

(define (replace-with-zero f term)

(cond (null? term) f)

(else

(econ (replace-with-zero (rep-complement f (car term))

(cdr term))
term)'))

;; FUNCTION: rep-complement

;) ;

CALLING FUNCTION(S): replace-with-zero, rep-complement

;; CALLED FUNCTION(S): replace-termh, rep-complement

;; PURPOSE: This function replaces the variable in each term of

a function with zero by deleting the complement form
of the variable from the term (same as multiplying by
one).

;; VARIABLES: f -- function to replace in

x -- term to replace

(define (rep-complement f x)
(cond ((null? f) nil)

(else
(cons (replace-terml (car f) x)

(rep-complement (cdr f) x)))))

;; FUNCTION: replace-terml

;; CALLING FUNCTION(S): rep-complement, replace-terml

;; CALLED FUNCTION(S): replace-terml

;; PURPOSE: Used by REP-COMPLEMENT to replare term in one term
at a time in the function.

;; VARIABLES: term -- term in the function to operate on

x -- term to replace

(define (replace-terml term x)

(cond ((null? term) nil)
((equal? (car term) (bar x))

(cdr term))

(else
(cons "car term)

B-73

(replace-terml (cdr term) x)))))

;; FUNCTION: relpace-with-one

;; CALLING FUNCTION(S): combinational-test, sequential-test.

combinational-testb, sequential-testo,

replace-with-one

;; CALLED FUNCTION(S): rep-uncomplement, replace-with-one, econ

PURPOSE: This function replaces a term (which ia our c,-e :
usually a single variable) in a function with one.
First the uncomplemented form of the term is deleteiJ
using REP-UNCOMPLEMENT. Deletion is the same as
multiplying oy one which is what replacement (with
one) does with uncomplemented terms The reman:rg
terms are those that are complemented and they can tc

; , replaced by zero (since they are complemented) uslin

the conjunctive eliminant.

;; VARIABLES: f -- function to replace in

x -- term to replace

(defire (replace-with-one f term)
(cond ((null? term) f)

(else
(econ (replace-with-one (rep-uncomplement f (car term))

(cdr term))
term))))

;; FUNCTION: rep-uncomplement

;; CALLING FUNCTION(S): replace-with-one, rep-uncomplement,

;; CALLED FUNCTION(S): replace-term2. rep-uncomplement

11- 74

PURPOSE: This function replaces the variable in each term of

; . a function with one by deleting the uncomplemented

; . form of the variable fvo. the term (same s

multiplying by one).

VARIABLES: f -- function to replace in

x -- term to replace

I : ne (rep-unc omplement f x;
''Iu~l f) n.")

else
(cons (replace-ter=2 (car f) x)

(rep-uncmDlement (cdr f) x)))))

FUNCTION: rerlace- erm2

CALLING FUNCTION(S): rep-uncomplement

CALLED FUNCTION(S); replace-term2

PURPOSE: Used by aEP-UNCOMPLEMENT to replace term in one term

* * at a time in the function.

VARIABLES: term -- term in the function to operate on

;; x -- term to replace

(define (replace-term2 term x)

(cond ((null? term) nil)

((equal? (car term) x)

(cdr term))
(else

(cons (car term)

(replace-term2 (cdr term) x)))))

B-75

;; FUNCTION: get-output-equations

;; CALLING FUNCTION(S): menu, get-output-equations

;; CALLED FUNCTION(S): flatten, any-matches, get-output-

;quations,

;; PURPOSE: This function extracts the output equations from
the two systems of equations from the input file.
It does so after all equations have been put into

prefix form. The output equations are recognized
by the fact that they contain no internal variables.

;; VARIABLES: intermediate-format -- the prefix form of all
;; equations in the input file

internal-nodes -- circuit internal nodes

(define (get-output-equations intermediate-format internal-nodes)
(if (null? intermediate-format) nil

(let* ((candidate (car intermediate-format))
(new-format (flatten candidate))

(matches (any-mtches internal-nodes new-format)))

(if (null? matches)

(append (list candidate) (get-output-equations

(cdr intermediate-format)

internal-nodes))
(get-output-equations (cdr intermediate-format)

internal-nodes)))))

;; FUNCTION: any-matches

;; CALLING FUNCTION(S): get-output-equations, any-matches

;; CALLED FUNCTION(S): any-matches

;; PURPOSE: This function checks a particular equation to see

; * if it includes any internal variables; if not then
it is returned as an output equation.

B-76

;; VARIABLES: items -- the variable list that is searched *_r.
internal variables in our case

candidate-list -- che flattened equa._ t-

;, searched

::: :: ..:: ::: ::: :: ::: ::. . .

(define (any-matches items candidate-list)

(cond ((null? items) nil)
((member (car items) candidate-list) i)
(else
(any-matches (cdr items) candidate.-1s:)))

'

FUNCTION: remove-output-equations

CALLING FUNCTION(S): menu, remove-output-eoat:cns

;; CALLED FUNCTION(S): remove-output-equations. remove

;; PURPOSE: After the output equations are obtained thero :s r

need to keep them with the circuit d

they are removed.

VARIABLES: intermediate-format -- descript:on to re. vo -

from

; , output-equations -- items to remove

(define (remove-output-equations intermediate-format

output-equaticns
(if (null? output-equations) intermediate-format

(remove-output-equations

(remove (car output-equations) intermeolate-format;

(cdr output-equaticns))))

|l77

M odifit-d Kafflec)I; t i4 I I f IC S

,en% t sch,3me-sy'nrtx scheme- schee-2 ,:a. em :ntt rp-a):

" Flnne: tester.s

This mdule is the prt.on of the diagn stic si,tem which provides the

mechanisms ftr c rn.<ucting the input-output exceriment. :t takes thec

single Boolean eq-uation prDduced by the Ec.at: -n Gerrat ion Module _f

tne system, 11sts .,f the inputs, outputs, and checpcints, and prcduces

test ve:tors fzr the given circuit. Cnce th, result of the test -s

known, the result is fed back to the system which used it to create
new information about the circuit. 7ests are conducted until it has
been determined that further information canno t be gained from

input-output tests. At this point. an equation exists which holds a!l
of the information know:. about the circuit, :ncluding the state of

faults and the actual circuit :unction. This equation is returned In
a list with the n,_ber of tests that were conducted.

Requires the files: bcolean.'sl, interp.fsl, interp-a.fsl

(TESTER inuut)

Parameters:

input - The output list from the Equation Generation Module of the
diagnostic system. It consists of sublists whi*ch are the

; *system equation generated by GENERATE-EQUATION, the INPUTS,

OUTPUTS, and the circuit CHECKPOINTS.

; -- TESTER decomposes the INPUT into its composite sublists and takes the

Blake Canonical Form of the equation to form a new equation (NEW-EQN).
-- A TEST-INPUT is generated from this NEW-EQN by MAKE-TEST-INPUT.

Then TESTER-i is called to begin the iterative testing process.

(define (tester input)

(let* ((equation (car input))

(inputs (cadr input))
(outputs (caddr input))
(checkpoints (cadddr input))

(new-eqn (bcf equation))
(test-input (make-test-input new-eqn inputs checkpoints outputs)))

(tester-i new-eqa test-input inputs checkpoints outputs 0)))

('2

(TESTER-1 equation test-inp inputs checkpcnts c;Qtputs tast-no)

Parameters:
;; equation - The system equation generated by GENERATE-E UAT N.

test-inp - The first test input generated by the diagnstic system
inputs - A list of the inputs of the circui,.
checkpoints - A list of the checkpoints in the circ :

outputs - A list of the outputs of the c.rcit.
;; test-no - The current test number. Initially, ths :s

;; -- TESTER-i is a helping prccedure for TESTER. However, it is the

;; module that supervises the input-output experiment.
If the TEST-INP is null, then another test could not be generated from

the system EQUATION. At this time, a message is output and the
system EQUATION is returned in a list along with the TEST-NO which

;; indicates the number of tests that occurred.
-- The TEST-INP is generated prior to TESTER-i being called. If it is

not null, then a test was generated. PRINT-SUGGESTED-INPUT outputs
the list representing the test vector in a user-readable form.

;; -- The user is then prompted for the RESULT of the test. The RESULT is
;; combined with the TEST-INP by MAKE-NEW-INFO to make NEW-INFOrmation
;; which can be added to the EQUATION. The combination of the EQUATION

and NEW-INFO forms a NEW-EQN. DCF is a procedure used to generate
a "Diagnostic Canonical Form" which is a form of the equation necessary

;; to generate new test vector inputs.

(define (tester-i equation test-inp inputs checkpoints outputs test-no)

(cond ((null? test-inp)
(writeln "New information cannot be obtained.")

(newline)
(cons test-no equation))

(else

; print out the suggested input in a user-readable format
(print-suggested-input test-inp)

(newline)

; for the first test, give the user instructions
(if (equal? 0 test-no)

(writeln "If the output was 0, type 0 and <rtn>, else type 1

and <rtn>.")

'0)

prompt for the result

('-3

r e adj in.e re s,-It e ur a' tW w z :t.1 r~ t ne.tm

and the re - .,nI make a iEV-E;W wnch c 4..: tt.e

E"AT:2N plus new informatin ierivej !r: thia irw

(leta ('result a-~ **e)*e

;(naw-info (make-new-infc, -st-inp -zsult cutp,,tsI') . . '', .

***$~e* * F-a-RF57 '"75 ;t a n the r s . n ;;; a.,e

... VM*... fr-,m the user following vect-r aFF:.at:in
,new-:nfcrm (gtL-results test-Inp output') o--tF"****

(new-ein (icf (a rend new-inform equaticn) inTuts outp, .t

; make a rec'..rsive call using the NEW-E.N. Ftor.Qrat:n.g a r:c

; TEST-INPUT on the fly. incre=ent the TEST-NE

(tester-1 new-eqn

(make-test-input r.ew-eqn nputs chockFc:nts cutFuts,

inputs

checkpoints

outputs

(1+ test-no))))))

;; GET-RESULTS

This function prompts the user to input the resulting outputs

following application of a particular test vector represented by

;; the variable TEST-INP. A prompt is sent for each output

;; contained in the list of circuit OUTPUTS. As each result is

;; read MAKE-NEW-INFO is called to form the term that combines

;; the vector minterm with the resulting output. The resulting

terms are combined in sum-of-products form and sent to the
;; calling routine TESTER-i.

(define (get-results test-Jnp outputs)

(if (null? outputs) nil

(begin

(display "Enter the Result from Output ")

(display (car outputs))

(display . - ")

C-I

(let* ((result (read))
(rnew-info (make-new-info test-inp result

(list (car outputs))))

(cons new-info (get:-results test-inp (cdr outputs))))

(PRINT-SU-CWS7ED-iNPUT 1st)

Parameters:
1st - A 1Lst of the form (%'A--) B-- C--). where the subelements

* dre literals representing the inputs to the circuit.

* - RINT-SUG3ESTED-INPUT prints out a message and then calls
PRINT-SU'GGjESTED-:-INPUT ;-1 which output~s each A the inputs individually.

(define (print-suggested-input Ist)

(writeln 'The Suggested input is:

(newline)

(print-suggested-input-I ist)

(PRINT-SUGGESTED-INPUT-1 Ist)

Parameters:

;; st - A list of the form ((A--) B-- C--), where the subelements
* , are literals representing the inputs to the circuit.

-PRINT-SUGGESTED-INPUT-i prints out the suggested input in a
user-readable format. The input LST is of the form ((A--) B-- C--).
where each symbol is an input to the circuit. If a literal is
enclosed in a sublist, then it should be set to 0. Otherwise, if it

;; exists in the top-level of the list, then it should be set to 1.
-In each call to PRINT-SLIGCESTED-INPUT-1, one of the suggested inputs

;;is output. Recursive calls are made until all of the suggested inputs

;;have been output.

-CONVERT-NODE-BACK is called to eliminate the suffix from each symbol.
The zymnbc~l iz theT.of th4 fzorm that was originally ilnput to the system
;; by the user.

(define (print-suggested-input-i 1st)
(if (null? 1st)

(0
(let ((first-term (car 1st))

(rest (cdr 1st)))

if the first-term is a symbol, it should be set to 1

otherwise, if in a sublist, it should be P~t to 0

(if (symbol? first-term)

(begin
(writeln .. . (convert-node-back first-term) " = 1")

(print-suggested-input-i rest))

(begin
(writeln .. . (convert-node-back (car first-term)) " = 0")

(print-suggested-input-i rest))))))

;; (MAKE-NEW-INFO test-input result outputs)

Parameters:
;; test-input - A list of the form ("A--) B-- C--) which was the test

vector generated by TEST-INPUT.

;; result - A string representing the result of the test; either
1''1 or "01

;; outputs - A list of the outputs of the circuit.

-- MAKE-NEW-INFO combines the TEST-INPUT with the OUTPUTS to make new
;; information about the state of the circuit.

-- The new information is based on the mathematical model that:
TEST-INPUT ==> OUTPUT

;; Translated into Boolean Algebra, this would be modeled

TEST-INPUT s OUTPUT

;; This is then converted to the form
TEST-INPUT * OUTPUT' = 0

;; Lists are built appropriately to implement this last equation.
;;This list is then added to the old equation to form an updated equation.

-- As currently implemented, it is assumed that OUTPUTS is a list of
a single element representing a single output of the circuit.

****VM**** perform function on one output at a time

(define (make-new-info test-input result output) ; ****VM****

(ne!line)
(newline)
(writeln "Processing 11)

(newline)

(cond ((equal? result 1) ; ****VM****
(append test-input (list output))) ; ****VM****

((equal? result 0) ; ****VM****

(append test-input output)))) ; ****VM****

C-6

;; (DCF equation inputs outputs)

Parameters:
equation - The new equation formed by adding the new rmat.r.

generated by an input-output test to the cid syst em

This equation is in fxO form.
;; inputs - A list of the inputs of the circuit.
;; outputs - A list of the outputs of the circ,it.

;; --DCF generates the "Diagnostic Canonical Form" of the system equat:cn.
;; --First, the Blake Canonical Form (BCF) is taken of the input EQUATICN.
; This generates all of the possible consensus terms from the E.UAT1CN.

;; --The aim of the Diagnostic Canonical Form is to get the equaticn into
;; the following form:

A(x,y) z' + B(x,y) z + G(y) = 0 where x represents the circuit
inputs, z the circuit outputs,

and y the checkpoint variables

-- However, after getting the Blake Canonical Form of this equation,
;; it may be in the form:

A(x,y) z' + B(x,y) z + H(xy) = 0

-- The G(y) term is made up of the elements of H(x,y) which have had
;; the input variables stripped, or SIFTed, off. This can be done
;; because the input variables are not constrained due to independence.
;; Thus, the checkpoint variables they are combined with to form a term
;; must be identically equal to 0.

-- SIFT forms the terms in G(y) which are added to the input EQUATION.
UNABSORB is then called to execute absorptions caused by these new

;; terms.

(define (dcf equation inputs ' utputs)

(unabsorb (sift (bcf equation) inputs outputs)))

;; (SIFT equation inputs outputs)

;; Parameters:
equation - The new equation formed by adding the new information

generated by an input-output test to the old system equation.

This equation is in f=O form.

C-7

inputs A list of the inputs of the circuit.
;; outputs - A list of the outputs of the circuit.

-- SIFT is a helping procedure for the DCF procedure. It generates the
;; G(y) terms from the H(x,y) terms in the equations listed above.

-- COMMON-ARGS? is used to determine whether any OUTPUTS are in a given
;; term of the EQUATION. If they are, then this term is simply ignored.
;; If they are not, then the INPUTS are disjunctively eliminated from the
;; term to yield a term that is composed only of checkpoint variables.

-- SIFT calls itself recursively until all terms of the input EQUATION
;; have been checked and modified if appropriate.

(define (sift equation inputs outputs)
(cond ((null? equation)

'C))
((not (common-args? outputs (car equation)))

(cons (car (edis (list (car equation)) inputs))
(sift (cdr equation) inputs outputs)))

(else
(cons (car equation)

(sift (cdr equation) inputs outputs)))))

;; (MAKE-TEST-INPUT equation inputs checkpoints outputs)

;; Parameters:
;; equation - The new equation formed by adding the new information

generated by an input-output test to the old system equation.
This equation is in f=O form.

;; inputs - A list of the inputs of the circuit.
;; outputs - A list of the outputs of the circuit.
;; checkpoints - A list of the checkpoints of the circuit.

-- MAKE-TEST-INPUT uses EQUATION, the CHECKPOINTS, and the OUTPUTS,
;; to generate a test vector input.
;; --MAKE-INPUT-EQUATION is passed the EQUATION, CHECKPOINTS, and OUTPUTS.
;; Boolean elimination is used to remove the CHECKPOINTS and OUTPUTS
;; from the EQUATION to get an INPUT-EQUATION in f=O format.
;; Solving this equation yields an effective input that will yield

;; new information about the circuit.
-- Because it is difficult to solve an equation in f=O format, i.e.

;; all terms must be set to 0, the INPUT-EQUATION is complemented
;; to get the f=1 form. Then, only a single TERM need be set to I to
;; solve the equation. DISPLAY-CIRCUIT-FUNCTION-1 is called to
;; display the f=O equation that must be solved.

C-8

-- When the INPUT-EQUATION becomes equal to 1, or in the representation
;; used in this system, '(0). then further effective inputs cannot

;; be generated. At this time ') is returned.
-- All of the INPUTS may not exist as literals of TERM. COMBINE is

;; used to insert the INPUTS that are not literals of TERM into term.

;; Due to the nature of Boolean Algebra, these missing literal can
;; be arbitrarily set to 0 or I. In this implementation, the missing

;; literals are set to 1. SORT-TERM is called to generate a test
vector in sorted order.

(define (make-test-input equation inputs checkpoints outputs)

VM* MAKE-INPUT-EQUATION no longer needs circuit OUTPUTS

bezause they will no longer be eliminated

(let* ((input-equation (make-input-equation equation checkpoints))

****VM**** GET-VECTOR obtains an optimal minterm (test vector)

from a set of effective test vectors. Though all
possible input combinations are processed, the

function stops short of picking a non-effective

vector.

(term (get-vector input-equation inputs outputs)))

force 17 newlines to the screen to reduce clutter

(do (Ci 1 (1+ i)))
((> i 17) 'C))
(newline))

(newline)

if the input function was 0, then any input is an effective input

i.e. there are no constraints on input variables that are required
to yield new information about the circuit

(if (null? input-equation)
(writeln "The Input Equation is: 0 = 0")

(begin

(display "The Input Equation is: ")
(display-circuit-function-I input-equation)

(writeln "= 0")))

if the input was 1 i.e. '()), then return nil to signify that a
new input function cannot be generated. Otherwise, take the term,

fill in the missing literals, sort is alphabetical order, and return.

;VM SORT-TERM will return null if term is null to indicate

that no further info can be gained.

C-9

(sort-term term)))

;; GET-VECTOR

This function generates a minterm (test vector) by choosing the
;; optimal vector from a set of vectors. The input FUNCTION is
;; complemented to attain the f = 1 sum-of-products form. The

;; result is EXPANDed with respect to the INPUT-NODES to enumerate
;; all of the possible input combinations. The resulting terms
;; combine each input combination with a function of the output

;; nodes. These output functions may include anywhere from none or
;; all of the outputs. Those terms with the least number of

outputs in their output functions represent optimal vectors
;; because the input combinations associated with them stand to
;; gain the most information when applied. EXPAND1 associates a
;; number with each input combination based on the expansion of the
;; output functions with respect to the OUTPUT-NODES. The
;; output functions with the least number of outputs will result in
;; the largest number of terms when expanded. PICK-LARGE chooses
;; the largest number generated. PICK-ONE takes one of the input
;; combinations associated with the largest number. If the largest

;; number generated is I then all possible info has been gained and

;; this function returns nil.

(define (get-vector function input-nodes output-nodes)

(let* ((function2 (complement function))
(function3 (expand function2 input-nodes))

(candidates (expandl function3 output-nodes))
(large-num (pick-large candidates 0))

(choice (pick-one candidates large-num)))
(if (equal? large-num 1)

nil
choice)))

;; 9 * * p *9~ 9~p p 9 9 9~p p p ******R p 9 99 pp ~p9

;; EXPAND

C-I0

;; This is a special boolean expansion wrt the input variatls.

;; It calls DIVIDE1 to get the functions required to complete

;; expansion (functions w/ the var set equal to one and zero).

;; DIVIDE2 actually performs the calculation, while DIVIDEI insures

;; that the output function is enclosed in parentheses when after

;; the last input variable is used for expansion.

(define (expand func arg-list)

(if (null? arg-list) (list func)
(let* ((num (length arg-list))

(arg (car arg-list))

(narg (bar arg))
(fO (dividel func narg num))

(fl (dividel func arg num))
(mO (expand fO (cdr arg-list)))

(ml (expand fl (cdr arg-list))))
(append (prefix narg mO)

(prefix arg ml)))))

;; ****VMC**

;; DIVIDE1

;; This function calls DIVIDE2 to get the functions required to

;; complete expansion. If we're on the last input variable then

;; a list is formed a with the next expansion which should be a

;; list of arguments containing just output vars.

(define (dividel f x num)

(let* ((result (divide2 f x)))

(if (equal? num 1) (list result)
result)))

;; ****VM***,

;; DIVIDE2

C-11

;; This function generates the functions that set a given variable
;; equal to zero nd one, respectively.

(define (divide2 f x)
(cond ((null? f) nil)

((member (bar x) (car f))
(divide2 (cdr f) x))

(else
(cons (remove x (car f))

(divide2 (cdr f) x)))))

EXPAND1

;; This function expands the output functions which are inside
;; parentheses, (1p), wrt output nodes and returns the number of
;; expansions along side the input combination associated with the

;; output function.

(define (expandl func arg-list)
(if (null? func) nil

(let* ((lp (last-pair (car func)))
(expansion (remove-duplicates (expand2 (car lp)

arg-list)))
(minterm (remove (car lp) (car func)))
(num (list (length expansion))))

(append (list (append num minterm))

(expandl (cdr func) arg-list)))))

;; ****VM****

;; EXPAND2

;; This function performs a normal boolean expansion on a function
;; wrt a specified list of variables using DIVIDE2 to generate the

C-12

;; functions needed for expansion.

(define (expand2 func arg-list)

(if (null? arg-list) func

(let* ((arg (car arg-list))

(narg (bar arg))
(fO (divide2 func narg))

(fl (divide2 func arg))

(mO (expand2 fO (cdr arg-list)))

(ml (expand2 fl (cdr arg-list))))

(append (prefix narg mO)

(prefix arg ml)))))

;; PICK-LARGE

;; This fucntion picks the largest number generated by EXPAND1 to
;; aid in finding an optimal vector.

(define (pick-large term-list start-num)

(if (null? term-list) start-num
(let ((new-num (caar term-list)))

(if (> new-num start-num)

(pick-large (cdr term-list) new-num)

(pick-large (cdr term-list) start-num)))))

°,°°°°o3oo3oo3333o°3,°oo,,°,°3o o3°.°.3.............................

33

;; ****VM****

;; PICK-ONE

This functions uses the largest number to choose one of the
;; minterms that represents an optimal test vector.

(define (pick-one terms num)

('-13

(let ((candidate (caar terms)))

(if (equal? candidate nim)
(remove num (car terms))
(pick-one (cdr terms) nm))))

;; 86oVM,9-,

REMOVE-DUPL:CATES

This is a helping function that removes duplicate items from a
;; list.

(define (remove-duplicates Ist)

(cond ((null? ist)

())

((member (car Ist) (cdr Ist))
(remove-duplicates (cdr 1st))

(else
(cons (car 1st) (remove-duplicates (cdr ist)))))

(MAKE-INPUT-EQUATION equation checkpoints outputs)

;; Parameters:
;; equation - The new equation formed by adding the new information

generated by an input-output test to the old system equation.

This equation is in f=O form.
;; checkpoints - A list of the checkpoints of the circuit.

;; outputs - A list of the outputs of the circuit.

-- MAKE-INPUT-EQUATION accepts an equation of the form:

P(x,y,z) = 0 where x are the inputs of the circuit,
y are the checkpoints of the circuit,

and z the outputs uf the circuit.

-- Conjunctive ELIMINATion is used to remove the checkpoints from
;; the equation. This leaves an equation of the following form:

C-I

A(x) z' + B(x) z = 0

-- Disjunctive elimination, performed by EDIS, yields an equation of the

;; form:

A(x) + B(x) = 0

-- The Blake Canonical Form of this equation, generated by BCF, is

;; then formed and returned.

;; ****VM**** this function has been changed to delete the

elimination of output variables

(define (make-input-equation equation checkpoints)
(bcf (eliminate equation checkpoints)))

(COMBINE term inputs)

Parameters:

;; term - A term from the f=l form of the INPUT-EQUATION.

;; inputs - A list of the inputs of the circuit.

-- All of the INPUTS may not exist as literals of TERM. COMBINE is

used to insert the INPUTS that are not literals of TERM into term.
Due to the nature of Boolean Algebra, these missing literal can

;; be arbitrarily set to 0 or 1. In this implementation, the missing

;; literals are set to 1.

-- For example, if the inputs were (A B C), and term
were A B = 1, then the equations A B C = 1 or A B C' = 1 would both

;; satisfy the constraints imposed by TERM. Thus, C can be arbitrarily
;; chosen. COMBINE sets C to 1.

(define (combine term inputs)
(cond ((null? inputs)

'())
((member (bar (car inputs)) term)

(cons (bar (car inputs))
(combine term \cdr inputs))))

(else
(cons (car inputs)

(combine term (cdr inputs))))))

('-15

;;; T specific call required for file compilation:

(herald interpm

(env t scheme-syntax scheme-1 schkeme-2 boolean
eqn-gen eqn-gena tokenize interp-a))

Modification -- replaced #T with T to denote true

Filename: interp.s

This module provides the facilities to interpret the output equation
from the TESTER.S module of the system. The facilities provided
include a procedure to compare the designed circuit to the function
that the circuit is actually performing, an interpretation of the

;; faults in the circuit, and a summary of system metrics.

NOTE: This implementation is based on the assumption of a single
output circuit. Procedures must be revised to accomodate

multiple output circuit diagnosis.

Requires the files: boolean.fsl, eqn-gen.fsl, eqn-gena.fsl,
tokenize.fsl, interp-a.fsl

(INTERPRET intermediate-format phi tester-output)

;; Parameters:
intermediate-format - The data structure, a list in prefix- frm that

was returned by procedure RUN-INPUT- - ULE.
This list is used to determine the appropriate

gate a given fanout node is associated with when

printing out results for each node.
phi - The data returned by GENERATE-EQUATION. The information

provided by this list includes the circuit INPUTS, OUTPUTS, and

CHECKPOINTS.

;; tester-output - The data returned by TESTER. This includes the
NO-OF-TESTS that were conducted as well as the

FINAL-EQUATION generated by TESTER. This equation
is solved to yield the circuit FUNCTION as well as the

FAULT-CLASSES in the circuit.

-- INTERPRET takes the output from all of the other major modules and
interprets the information to obtain the results of the diagnostic
test.

('-16

;;--DISPLAY-FUNCTIONS is called to determine the function that the circuit
;; performed based on the diagnostic test, as opposed to the function
;; that it was designed to perform. An equivalency check is made to
;; compare the actual to the designed function.

-- INTERPRET-FAULTS is called to derive the faults in the circuit.
both those that can be positively determined as well as cases of

;; faults that may have occurred, but cannot be determined with certainty.
-- DISPLAY-SYSTEM-METRICS is used to make a quick determination of the

a performance metrics of the diagnostic system.
Finally, the user is asked whether he would like to diagnose another
circuit. The REPLY, in the form of #T or '() is returned by
INTERPRET to the calling procedure where it is used to determine

;; whether to reexecute the calling module, or return to the main menu

of the diagnostic system.

(define (interpret intermediate-format phi tester-output)
; break down information from input parameters

(let* ((inputs (cadr phi))
(outputs (caddr phi))
(checkpoints (cadddr phi))

(no-of-tests (car tester-output))
(final-equation (cdr tester-output))

****VM**** this function includes all actual output functions

as determined by the test experiments
(int-a-function (eliminate final-equation checkpoints))

****VM**** SOLVE-FCNS generates a list of all output functions

for a multiple output circuit
(a-functions (solve-fcns (bcf int-a-function)

outputs outputs))

VM* this function includes all designed functions taken

from the original circuit description
(int-d-function (eliminate (simplify

(make-sop intermediate-format))
(get-internal-nodes intermediate-format)

****VM**** check the equivalence of the actual and design

* , functions

(equivalence-result (xor int-a-function int-d-function))

****VM**** generate a list of the designed output functions

(17

(d-functions (solve-fcns (bcf int-d-function)

outputs outputs))
(fault-classes (solve-cps final-equation outputs)))

(newline)

(writeln " ********* Results *********")

print out the function that the circuit is performing, the

function that it is supposed to perform, and whether the

two functions are equivalent

;; ****VM**** changed to account for several possible functions

(display-functions equivalence-result a-functions d-functions
outputs)

print out the possible faults in the circuit
(interpret-faults checkpoints fault-classes intermediate-format)
; display the performance metrics of the system
(display-system-metrics inputs no-of-tests)
(writeln "Would you like to try another circuit? ")

(writeln "If so, type yes and <rtn>, else ty'pe no and <rtn>.")

(writeln "A reply of no returns you to the main menu.")

(display "Enter yes or no (default is no) --> ")

(let ((reply (read-line)))

(if (equal? reply "yes")

T
'()))))

;; (SOLVE-FCN equation checkpoints outputs)

;; Parameters:
;; equation - The final equation produced by procedure TESTER. This

equation holds all information about the state of the system
after it has been determined that no new information can
be determined from further input-output tests.

;; checkpoints - A list of the checkpoint variables introduced into
the equation.

;; outputs - A list of the output nodes of the circuit.

-- SOLVE-FCN is used to generate the equation that the circuit is
;; performing based on the results of the input-output experiments.

-- The input EQUATION is of the form:

EQUATION(x,y,z) = 0 where x is the input variables,

C-18

y is the checkpoint variables,
and z is a single output variable

-- This EQUATION must then be converted to the form:

R(x) z' + S(x) z + T(y) = 0 where R(x) & S(X) are functions of the

input variables, and T(y) is a
function of the checkpoint variables

-- R(x) yields the actual circuit function. To obtain R(x), the
;; OUTPUTS can be DIVIDEd into the EQUATION using Boolean division.
;; This leaves an equation in terms of inputs and checkpoints.

;; Then the CHECKPOINTS can be removed using conjunctive ELIMINATion
;; to yield the single formula R(x).

****VM**** this function has been created to process several output
; , functions

(define (solve-fcns equation outputs outputs2)

(if (null? outputs) nil

(let* ((solved-fcn (solve-fcn equation

(list (car outputs)) outputs2)))
(append (list solved-fcn)

(solve-fcns equation (cdr outputs) outputs2)))))

;; ****VM**** changed to extract one output function at a time

(define (solve-fcn equation output outputs)

(let* ((new-outputs (remove (car output) outputs))
(eqn (divide equation output))
(eqn-minus-outputs (eliminate eqn new-outputs)))

eqn-minus-outputs))

;; (SOLVE-CPS equation outputs)

;; Paraimeters:
;; equation - The final equation produced by procedure TESTER. This

equation holds all iniormation about the state of the system

after it has been determined that no new information can
be determined from further input-output tests.

;; outputs - A list of the output nodes of the circuit.

-- SOLVE-CPS is used to generate the equation which can be solved to
;; determine the possible faults in the circuit. This equation is

(5'-j9

;; based on the results of the input-output experiment.

-- EQUATION is of the form:

EQUATION(x,y,z) = 0 where x is the input variables,
y is the checkpoint variables,

and z is a single output variable

-- This EQUATION must then be converted to the form:

R(x) z' + S(x) z + T(y) = 0 where R(x) & S(X) are functions of the
input variables, and T(y) is a

function of the checkpoint variables

-- T(y) yields the possible faults function. To obtain T(y), the
;; OUTPUTS can be ELIMINATEd from the EQUATION using conjunctive
;; elimination. This leaves an equation in terms of the checkpoints.

-- This equation is in f=O form which is difficult to solve to
;; determine the states of the checkpoint variables. Thus, the
;; equation is COMPLEMENT to get the f=1 form. Then, this equation is
;; SIMPLIFied to yield an equation in which the terms represent the

possible faults in the circuit.

-- Literals that exist in each of the terms are variables the state
;; of which nas been positively determined. When these variables are

;; r-moved, the terms left represent the possible faults that may exist
;; in the circuit.

(define (solve-cps equation outputs)
(simplify (complement (eliminate equation outputs))))

;; (DISPLAY-FUNCTIONS function outputs intermediate-format)

;; Parameters:
;; function - The function th* the circuit is performing as determined

by SOLVE-FCN.
;; outputs - A list of the outputs of tbo circuit.
;; intermediate-format - The data structure, a list in prefix-form that

was returned by procedure RUN-INPUT-MODULE.

This list is used to determine the function
; , that the circuit was designed to perform.

-- DISPLAY-FUNCTIONS determines the circuit's ACTUAL-FUNCTION, the
;; circuit's DESIGNED-FUNCTION and prints these functions to the
;; screen in the form of a Boolean equation.

-- An equivalency test is made to determine if these functions are

C-20

;; equivalent. The result of this test is output to the screen.

-- The FUNCTION is XORed with the OUTPUTS to get ACTUAL-FUNCTION in

;; f=O form. The prefix-form of the circuit, represented by the

;; INTERMEDIATE-FORMAT is used to determine the DESIGNED-FUNCTION.

;; The prefix-form must be reduced by MAKE-SOP and INTERNAL-NODES

;; must be ELIMINATEd to yield an equation in the form of inputs

;; and outputs without internal nodes.

- FUNCTION-D the DESIGNED-FUNCTION in the same form as the input
;; parameter FUNCTION to allow use of a single procedure,

;; DISPLAY-CIRCUIT-FUNCTION, in displaying the circuit function.

-- FOUTVALNCE-PESULT is the result zf XCRing the DESIGNED-FUNCTION with
;; the ACTUAL-FUNCTION. When two f=O equation are XORed together, if

;; the result is 0, or in this representation '), then the equations
;; are equivalent.

;; ****VM**** changed to display several functions when multiple

outputs exist
(define (display-functions equivalence-result a-function d-function

outputs)

(newline)
(writeln "The function(s) that the circuit was designed to perform is: ")

(newline)
(display-circuit-functions d-function outputs)

(newline)
(writeln "The function(s) that the circuit is performing is: ")

(newline)

(display-circuit-functions a-function outputs)

(newline)

(if (equal? equivalence-result '0)
(begin

(display "The actual circuit IS equivalent to the ")

(writeln "designed circuit."))

(begin

(display "The actual circuit IS NOT equivalent to the ")
(writeln "designed circuit."))))

;; (DISPLAY-CIRCUIT-FUNCTION function outputs)

;; Parameters:
;; function - An equation representing the function of the circiit.

;; outputs - The outputs of the circuit.

C-21

-- DISPLAY-CIRCUIT-FUNCTION takes an equation representing the

;; function that the circuit is performing, an displays this equation.

-- CONVERT-NODE-BACK is used to remove the suffix from the output node

;; symbol so that it is output in the form of the original output symbol
;; that was used by the user. This node is DISPLAYed followed by an

;; equals sign.
-- DISPLAY-CIRCUIT-FUNCTION-I is called to display the FUNCTION

;; which is only in terms of the inputs.

;; ****VM**** displays functions by calling

DISPLAY-CIRCUIT-FUNCTION-l to generate one function

at a time

(define (display-circuit-functions functions outputs)

(if (null? outputs) nil

(let ((output-node (convert-node-back (car outputs))))
(newline)
(display .)

(display output-node)

(display " = ")
(display-circuit-function-i (car functions))

(newline).
(display-circuit-functions (cdr functions) (cdr outputs)))))

;; (DISPLAY-CIRCUIT-FUNCTION-i function)

;; Parameters:

;; function - A formula representing the function of the circuit.

-- DISPLAY-CIRCUIT-FUNCTION-i displays the circuit function.
-- FUNCTION is a list of the form:

((Xi (x2) X3) ((Xl) x4) (X5) ((X6)))

;; which represents the formula:

Xi X2'X3 + XI'X4 + X5 + X6'

;; Each of the top-level sublists is a term of this formula. If a

;; literal exists in the top-level sublist in the form of a sublist, then
;; it exists logically in complemented form; uncomplemented otherwise.

-- FIRST-TERM is CARed from the FUNCTION and displayed by DISPLAY-TERM.

;; --If there are remaining terms in FUNCTION, then a + sign is DISPLAYed,

;; and DISPLAY-CIRCUIT-FUNCTION-i is called recursively to display the

C-22

;; remaining terms of the formula.

(define (display-circuit-function-I function)

(if (null? function)
(display-term function)
(let ((first-term (car function)))

(display-term (list first-term))

(if (not (null? (cdr function)))

(begin
(display " ")
(display-circuit-function-I (cdr function)))

'0))))

;; (DISPLAY-TERM term)

;; Parameters:
;; term - a list of the form (((Xi) X2 (X3))) where each of the

top level elements represents a term of a Boolean equation.
The example list represents a single term XI'X2 X3'.

-- DISPLAY-TERM prints a "i" if the term is of the form '(0) which
;; represents a Boolean 1.

-- DISPLAY-TERM prints a "0" if the term is of the form '() which
;; represents a Boolean 0.

;;--If TERM is not of this form, DISPLAY-TERM-i is called to display TERM.

(define (display-term term)

(cond C (member nil term)
(princ "l "))

((null? term)
(princ "0 "))

C else
(display-term-i term))))

;; (DISPLAY-TERM-i term)

;; ParameLers: a list of the form (((Xi) X2 (X3))) where each of the
top level elements represents a term of a Boolean equation.
The example list represents a single term Xi'X2 X3'.

-- If TERM is nil, then DISPLAY-TERM-i returns '(). Otherwise, the
;; TERM is sorted by SORT-TERM from file boolean.s. Then, the first
;; term is displayed by DISPLAY-TERM-2. The remaining terms are
;; displayed by a recursive call to DISPLAY-TERM-i.

C-23

(define (display-term-1 term)

(cond ((null? term)
'))

(else
(display-term-2 (sort-term (car term)))
(display-term-i (cdr term)))))

(DISPLAY-TERM-2 term)

Parameters:
;; term - a list cf the form ((X) X2 (X3)) representing the term

XI'X2 X3'.

-- DISPLAY-TERM-2 takes a list representing a term and prints out
;; each of the literals until the entire term has been output.
;;--If a literal exists in the term as a sublist, then it is complemented,
;; and a "I" (prime) is output immediately after the literal.

;; Otherwise, a space is output after the literal. DISPLAY-TERM-2

;; is called recursively to output the remaining literals of the TERM.
-- CONVERT-NODE-BACK is called to remove the suffix from the nodes

;; so that they are output in the form of the original node symbols
;; used by the user.

(define (display-term-2 term)

(cond C (null? term)
'1))

((atom? (car term))
(princ (convert-node-back (car term))) (princ.

(display-term-2 (cdr term)))
(else

(princ (convert-node-back (car (car term)))) (princ "'")
(display-term-2 (cdr term)))))

;; (CONVERT-NODE-BACK node)

;; Parameters:
;; node - A symbol of the form ABC--.

-- CONVERT-NODE-BACK accepts a NODE of the given form, removing the
;; last two characters and returning a symbol of the form ABC.

(define (convert-node-back node)
(let* ((node-l (string->list (symbol->string node)))

(node-less-suffix (remove-suffix node-l)))

C-24

(string->symbol (list->string node-less-suffix))))

;; (INTERPRET-FAULTS checkpoints fault-classes intermediate-format)

;; Parameters:
;; ~heckpoints - A list of the checkpoint variables generated by the

system.
;; fault-classes - A list of lists representing different fault cases

that may occur.
;; intermediate-format - The data structure, a list in prefix-form that

was returned by procedure RUN-INPUT-MODULE.
This list is used to determine the appropriate

gate a given fanout node is associated with when
printing out faults for each node.

-- INTERPRET-FAULTS is called to derive the faults in the circuit,
;; both those that can be positively determined as well as cases of

;; faults that may have occurred, but cannot be determined with certainty.
-- REMOVE-LAST-CHAR-FROM-ALL-ELTS accepts the list of CHECKPOINTS which

;; is of the form (AXO AXI BOO BOl BIO Bl CXO CXI) and returns a list
;; of the form (AX BO B1 CX). This latter list represents the actual

;; checkpoints in the circuit. GET-INPUT-CHECKPOINTS accepts the new
;; list and returns a list of the INPUT-CHECKPOINTS which is a list of
;; the form (AX CX). GET-SUBLIST subtracts the INPUT-CHECKPOINTS list

;; from the new list to form the FANOUT-CHECKPOINTS list, which in this
;;example would be (BO BI). The fanout checkpoints must be distinguished
;; from the input checkpoints because the output of the faults for
;; these two distinct types of checkpoints is different. The input

;; nodes be only listed. The fanout node faults must have the gate
;; displayed also so the user knows which fanout stem may have a fault.

-- GET-NORMAL-NODES accepts the list of FAULT-CLASSES and determines

;; the normal nodes in the list. The second parameter is the list
;; of the nodes to check for normality. In the first call to
;; GET-NORMAL-NODES, the INPUT-CHECKPOINTS are checked to see if they are
;; normal. In the second call, the FANOUT-CHECKPOINTS are checked.
;; -- REMOVE-NORMAL-NODES is called to remove the NORMAL-INPUT-NODES and
;; the NORMAL-FANOUT-NODES from the fault classes, producing

;; FAULT-CLASSES-i and FAULT-CLASSES-2, respectively.
;;--GET-COMMON-NODES gets all of the literals common to each of the terms
;; after the normal nodes have been removed. REMOVE-COMMON-NODES
;; removes the COMMON-NODES from FAULT-CLASSES-2 to produce

;: FAULT-CLASSES-3 which is a list of terms which have no literals
:; (sublists) in common. Each of these terms represents a different
;; fault that may have occurred in the circuit.

-- GET-COMMON-INPUT-NODES extracts the COMMON-INPUT-NODES from

C-25

;; the COMMON-NODES. GET-SUBLISTS subtracts the COMMON-INPUT-NODES

;; from the COMMON-NODES to get the COMMON-FANOUT-NODES. The
;; COMMON-INPUT-NODES and COMMON-FANOUT-NODES are used to get the

;; stuck-at-O, stuck-at-i, not-stuck-at-O, and not-stuck-at-I nodes

;; for both the input and fanout nodes. Lists are made for each case.

;; In many cases, these list may be nil.

-- SHOW-LIST-OF-NODES is called to print out the input nodes for

;; the appropriate fault. SHOW-FANOUTS is called to print out the

;; fanout nodes for the appropriate fault. SHOW-FANOUTS outputs the
;; appropriate node as well as the gate that the node is associated with.

;; A given fanout node may have a fanout of three, each of which has

;; an associated checkpoint. Thus, the gate must be associated with the
;; checkpoint when the checkpoint fault status is output.

-- Remaining fault cases, those that represent different faults that
;; may be occurring in the circuit are interpreted by a call to

;; INTERPRET-FAULT-CASES. CHECKPOINTS-i, the INTERMEDIATE-FORMAT, and
;; FAULT-CLASSES-3 are passed to INTERPRET-FAULT-CASES.

(define (interpret-faults checkpoints fault-classes intermediate-format)

(let* ((checkpoints-I (remove-last-char-from-all-elts checkpoints))

(input-checkpoints (get-input-checkpoints checkpoints-i))
(fanout-checkpoints (get-sublist checkpoints-i

input-checkpoints))
(normal-input-nodes (get-normal-nodes input-checkpoints

fault-classes))

(fault-classes-i (remove-normal-nodes normal-input-nodes
fault-classes))

(normal-fanout-nodes (get-normal-nodes fanout-checkpoints
fault-classes-i))

(fault-classes-2 (remove-normal-nodes normal-fanout-nodes

fault-classes-i))

(prefix-list (make-unique-fanouts intermediate-format))

(common-nodes (get-common-nodes fault-classes-2))

(fault-classes-3 (remove-common-nodes common-nodes

fault-classes-2))
(common-input-nodes (get-common-input-nodes common-nodes))

(common-fanout-nodes (get-sublist common-nodes

common-input-nodes))

(input-nodes-s-a-O (get-stuck-at-O-nodes common-input-nodes))
(input-nodes-s-a-i (get-stuck-at-l-nodes common-input-nodes))

(input-nodes-n-s-a-O (get-not-stuck-at-O-nodes common-input-nodes))
(input-nodes-n-s-a-1 (get-not-stuck-at-l-nodes common-input-nodes))

C-26

(fanout-nodes-s-a-O (get-stuck-at-O-nodes common-fanout-nodes))
(fanout-nodes-s-a-1 (get-stuck-at-i-nodes common-fanout-nodes))

(fanout-nodes-n-s-a-O (get-not-stuck-at-O-nodes common-fanout-nodes))
(fa.nout-nodes-n-s-a-1 (get-not-stuck-at-i-nodes comon-fanout-nodes))

)

(newline)

(newline)

(display "**** The following information is certain ")

(writeln "about the circuit **** ")

(newline)

(writeln "Input nodes (which do not fanout) that are normal:")
(newline)

(if (null? normal-input-nodes)
(writeln " --none--")

(show-list-of-nodes normal-input-nodes))

(newline)
(writeln "Input nodes (which do not fanout) that are stuck-at-O:")

(newline)

(if (null? input-nodes-s-a-O)
(writeln " --none--")
(show-list-of-nodes input-nodes-s-a-O))

(newline)
(writeln "Input nodes (which do not fanout) that are stuck-at-i:")

(newline)
(if (null? input-nodes-s-a-i)

(writeln " --none--")

(show-list-of-nodes input-nodes-s-a-i))

(newline)
(writeln "Input nodes (which do not fanout) that are NOT stuck-at-O:")

(newline)
(if (null? input-nodes-n-s-a-O)

(writeln " --none--")

(show-list-of-nodes input-nodes-n-s-a-O))

(newline)
(writeln "Input nodes (which do not fanout) that are NOT stuck-at-i:")

(newline)
(if (null? input-nodes-n-s-a-i)

(writeln " --none--")

(show-list-of-nodes input-nodes-n-s-a-i))

(newline)

(newline)

C-27

(writeln "Fanout nodes that are normal:")

(newline)

(if (null? normal-fanout-nodes)

(writeln " --none--")
(show-fanouts normal-fanout-nodes prefix-list))

(newline)
(writeln "Fanout nodes that are stuck-at-O:")

(newline)

(if (null? fanout-nodes-s-a-O)
(writeln " --none--")

(show-fanouts fanout-nodes-s-a-O prefix-list))
(newline)
(writeln "Fanout nodes that are stuck-at-i:")

(newline)

(if (null? fanout-nodes-s-a-1)
(writeln " --none--")

(show-fanouts fanout-nodes-s-a-i prefix-list))

(newline)

(writeln "Fanout nodes that are NOT stuck-at-O:")
(newline)

(if (null? fanout-nodes-n-s-a-O)

(writeln " --none--")
(show-fanouts fanout-nodes-n-s-a-O prefix-list))

(newline)

(writeln "Fanout nodes that are NOT stuck-at-i:")

(newline)
(if (null? fanout-nodes-n-s-a-i)

(writeln " --none--")

(show-fanouts fanout-nodes-n-s-a-i prefix-list))

interpret the remaining cases, if they exist

(newline)
(if (not (equal? fault-classes-3 '(0)))

(interpret-fault-cases checkpoints-i

fault-classes-3
intermediate-format))))

;; (SHOW-LIST-OF-NODES nodes)

;; Parameters:
;; nodes - a list of nodes

;; - SHOW-LIST-OF-NODES accepts a list of the form (AX BX CX) and
;; removes the last character from each of the symbols to produce a

;; MODIFIED-LIST of the form (A B C).
;;--SHOW-NODES is then called to display each of the nodes in the new list.

C-28

(define (show-list-of-nodes nodes)

(let* ((modified-list (remove-last-char-from-all-elts nodes)))
(show-nodes modified-list)))

(SHOW-NODES 1st)

;; Parameters:

;; 1st - an arbitrary list

-- SHOW-NODES displays each of the elements of LST on a separate line,
;; until there are no further elements to display.

(define (show-nodes ist)

(if (null? 1st)

'()

(begin
(display .)

(writeln (car 1st))

(show-nodes (cdr 1st)))))

;; (REMOVE-LAST-CHAR-FROM-ALL-ELTS 1st)

;; Parameters:
;; 1st - an arbitrary list

-- REMOVE-LAST-CHAR-FROM-ALL-ELTS removes that last character from every

;; symbol in an arbitrary list. The procedure breaks down sublists to
;; change every symbol at any level.

-- It is assumed that every symbol has two or more characters.

(define (remove-last-char-from-all-elts 1st)

(cond ((null? 1st)
10)

((symbol? 1st)

(remove-last-char-from-symbol 1st))
((symbol? (car 1st))
(remove-duplicates

(cons (remove-last-char-from-symbol (car Ist))
(remove-last-char-from-all-elts (cdr 1st)))))

(else

(remove-duplicates
(cons (remove-last-char-from-all-elts (car 1st))

(remove-last-char-from-all-elts (cdr 1st)))))))

C- 29

;; (SHOW-FANOUTS fanout-nodes prefix-list)

Parameters:

;; fanout-nodes - a list of nodes of the form (BI BO)

;; prefix-list - The prefix list of the input circuit; this list
was modified to MAKE-UNIQUE-FANOUTS of each of the
fanout nodes. This is necessary to distinguish the

fanouts and associate them with the list of fanout nodes.

-- SHOW-FANOUT takes th.j PREFIX-LIST and removes that last char from
;; each of the NODE-SYMBOLS. This leaves a list of the form:

((EQ E- (NOT (* AX BO)))

(EQ F- (NOT B2)

(EQ Z- (NOT (* E- F-))))

-- SHOW-FANOUTS-1 is then passed the list of FANUUT-NODES and the

;; new prefix list.

(define (show-fanouts fanout-nodes prefix-list)
(let ((prefix-list-I (remove-last-char-from-node-symbols prefix-list)))

(show-fanouts-1 fanout-nodes prefix-list-i)))

;; (SHOW-FANOUTS-1 fanout-nodes prefix-list)

;; Parameters:

;; fanout-nodes - A list of fanout nodes

;; prefix-list - the modified prefix-list from SHOW-FANOUTS

-- SHOW-FANOUTS-1 iteratively outputs each of the FANOUT-NODES in the
;; input list, displaying in sequence the NODE and then the GATE

;; associated with that fanout node.
-- GET-GATE returns the EQUATION associated with the fanout node.

;; For example, if node BO were to be displayed, then the EQUATION
;; returned by GET-GATE would be (EQ E- (NOT (* AX BO))). This equation

;; is displayed by SHOW-EQUATION.
;;--SHOW-FANOUTS-l calls itself recursively until all of the FANCUT-NODES

;; in the original list have been displayed with the appropriate gate.

(define (show-fanouts-1 fanout-nodes prefix-list)

(if (null? fanout-nodes)

,()

(let ((equation (get-gate (car fanout-nodes) prefix-list))
(display " Node ")
(display (remove-last-char-from-symbol (car fanout-nodes)))

(-3fl

(display " of gate: ")

(show-equation equation)

(show-fanouts-1 (cdr fanout-nodes) prefix-list))))

(SHOW-EQUATION equation)

Parameters:

equation - a list of the form (EQ E- (NOT (s AX BO)))

-- SHOW-EQUATION displays the above equation in the form E = A * B.
-- First, the output node for the gate is display followed by an equals

sign. Then either SHOW-NEGATED-EQUATION, or SHOW-FORMULA are called
depending on whether the gate is of the NEGATED variety, i.e. NAND.

(define (show-equation equation)

(let* ((output (cadr equation))

(input (caddr equation)))
(display (remove-last-char-from-symbol output))

(display " = ")
(if (equal? (car input) 'NOT)

(show-negated-equation (cadr input))

(show-formula input))

(newline)))

(INTERPRET-FAULT-CASES checkpoints fault-classes intfrmediate-format)

;; Parameter:

;; checkpoints - A list of the form (AX BO B1 CX).
fault-classes - A list of lists in which each sublist is a term

representing a distinct fault class.

intermediate-format - the intermediate-format from RUN-INPUT-MODULE.

- - INTERPRET-FAULT-CASES prints out an introductory message and then
;; calls INTERPRET-FAULT-CASES-i. All parameters are passed. A new

;; parameter, the number 1 is passed to INTERPRET-FAULT-CASES which uses
;; this number to keep track of the different fault cases.

(define (interpret-fault-cases checkpoints fault-classes

intermediate-format)

(newline)
(writeln "**** One of the following cases holds for the circuit ****")

(newline)
(interpret-fault-cases-i checkpoints fault-classes intermediate-format 1))

('-31

;; (INTERPRET-FAULT-CASES-i checkpoints fault-classes intermediate-format
case-number)

;; Parameters:
checkpoints - A list of the form (AX BO BI CX).

;; fault-classes - A list of lists in which each sublist is a term
representing a distinct fault class.

;; intermediate-format - The intermediate-format from RUN-INPUT-MODULE.
;; case-number - An integer. Initially, this number is 1. Every time

that INTERPRET-FAULT-CASES-i is called recursively to

interpret another case, this number is incremented.

;;-- INTERPRET-FAULT-CASES-i operates similarly to INTERPRET-FAULTS.
;; However, it is tailored to interpreting distinct fault cases that
;; may have occurred in the circuit.

;;--The first term (FIRST-CASE) is removed from the list of FAULT-CLASSES.
;; FIRST-CASE is examined to determine the types of faults associated
;; with each of the nodes in the term. The order this is done is the
;; same as in INTERPRET-FAULTS. There is no need to check for

COMMON-NODES, because no common nodes exist between terms of
;; FAULT-CLASSES when this procedure is invoked.
;;--The only case found different in this procedure than in INTERPRET-

;; FAULTS
;; is that nodes may be found that have been interpreted to be
;; stuck-at-O or stuck-at-i in which the complementary not-stuck-at-i
;; or not-stuck-at-O, respectively, variable is not found. In this case,
;; lists are made of "only" stuck-at-O or "only" stuck-at-i nodes.
;; However, the display procedures do not differentiate between
;; stuck-at-O and only-stuck-at-O and stuck-at-i and only-stuck-at-i.

-- For each case of faults, the input node and fanout node faults
;; are displayed together. SHOW-INPUT-NODES is called to display
;; input nodes, and SHOW-FANOUT-NODES is called to display the

;; fanout nodes and associated gates.
;;--After a case is interpreted and displayed, then INTERPRET-FAULT-

;; CASES-i
;; calls itself recursively until all cases have been displayed.
;; CASE-NUMBER is incremented with each recursive call.

(define (interpret-fault-cases-I checkpoints

fault-classes

intermediate-format

case-number)

(if (not (null? fault-classes))

('-32

(let* ((first-case (list (car fault-classes)))

(input-checkpoints (get-input-checkpoints checkpoints))
(fanout-checkpoints (get-sublist checkpoints

input-checkpoints))
(normal-input-nodes (get-normal-nodes input-checkpoints

first-case))
(first-case-i (remove-normal-nodes normal-input-nodes

first-case))
(normal-fanout-nodes (get-normal-nodes fanout-checkpoints

first-case-i))
(first-case-2 (remove-normal-nodes normal-f anout-nodes

first-case-i))
(prefix-list (make-unique-fanouts intermediate-format))

(prefix-list-I (remove-last-char-from-node-symbols

prefix-list))
(common-nodes (get-common-nodes first-case-2))

(input-faults (get-common-input-nodes common-nodes))
(fanout-faults (get-sublist common-nodes input-faults))

(input-nodes-s-a-a (get-stuck-at-O-nodes input-faults))
(input--nodes-s-a-I (get-stuck-at-l-nodes input-faults))

(input-nodes-n-s-a-O (get-not-stuck-at-a-nodes input-faults))
(input-nodes-n-s-a-i (get-not-stuck-at-l-nodes input-faults))
(input-nodes-o-s-a-a (get-only-stuck-at-a-nodes input-faults))
(input-nodes-o-s-a-I (get-only-stuck-at-l-nodes input-faults))

(fanout-nodes-s-a-O (get-stuck-at-a-nodes fanout-faults))
(fanout-nodes-s-a-i (get-stuck-at-l-nodes fanout-faults))

(fanout-nodes-n-s-a-a (get-not-stuck-at-a-nodes fanout-faults))
(fanout-nodes-n-s-a-i (get-not-stuck-at-l-nodes fanout-faults))

(fanout-nodes-o-s-a-a (get-only-stuck-at-a-nodes fanout-faults))
(fanout-nodes-o-s-a-1 (get-only-stuck-at-l-nodes fanout-faults))

)

(writeln ' * Case #" case-number "

(newline)

(if (not (null? normal-input-nodes))
(show-input-nodes normal-input-nodes 'normal))

(if (not (null? input-nodes-s-a-a))
(show-input-nodes input-nodes-s-a-a 'stuck-at-a))

(if (not (null? input-nodes-s-a-i))
(show-input-nodes input-nodes-s-a-i 'stuck-at-i))

(if (not (null? input-nodes-n-s-a-a))

C-33

(show-input-nodes input-nodes-n-s-a-O

'not-stuck-at-O))
(if (not (null? input-nodes-n-s-a-i))

(show-input-nodes input-nodes-n-s-a-i

'not-stuck-at-i))
(if (not (null? input-nodes-o-s-a-O))

(show-input-nodes input-nodes-o-s-a-O 'only-stuck-at-O))

(if (not (null? input-.."Ies-0-8-a-i))

(show-input-nodes input-nodes-o-s-a-i 'only-stuc.'--i))
(if (not (null? normal-faxiout-nodes))

(show-f anout-nodes normal-f anout-nodes
'normal

prefix-list-i))
(if (not (null? fanout-nodes-s-a-O))

(show-fanout-nodes fanout-nodes-s-a-O

'stuck-at-O

prefix-list-i))
(if (not (null? fanout-nodes-s-a-i))

(show-f anout-nodes fanout-nodes-s-a-i

'stuck-at-i
prefix-list-i))

(if (not (null? fanout-nodes-n-s-a-O))
(show-f anout-nodes fanout-nodes-n-s-a-O

'not-stuck-at -o
prefix-list-i))

(if (not (null? fanout-nodes-n-s-a-i))

(show-fanout-nodes fanout-nodes-n-s-a-i

'not-stuck-at-i

prefix-list-i))
(if (not (null? fanout-nodes-o-s-a-O))

(show-f anout-nodes fanout-nodes-o-s-a-O

'only-stuck-at-O
prefix-list-i))

(if (not (null? fanout-nodes-o-s-a-1)

(show-f anout-nodes fanout-nodes-o-a-a-i

'only-stuck-at-i

prefix-list-i))

(newline)

(display "Press <return> to continue.")
(pause)

(newline)
(newlime)

(interpret-fault-cases-i checkpoints

(cdr fault-classes)

C-34

intermediate-format
(1+ case-number)))))

(REMOVE-LAST-CHAR-FROM-SYMBOL symbol)

;; Parameters:
;; symbol - an arbitrary symbol

- REMOVE-LAST-CHAR-FROM-SYMBOL decomposes the symbol, drops the
;; last character from the symbol, reassembles the symbol and
;; returns the NEW-SYMBOL.

(define (remove-last-char-from-symbol symbol)

(let* ((symbol-l (string->list (symbol->string symbol)))

(new-list (drop-last-char symbol-l))
(new-symbol (string->symbol (list->string new-list))))

new-symbol))

;; (GET-INPUT-CHECKPOINTS checkpoints)

;; Parameters:

;; checkpoints - A list of the form (AX BO BI CX).

-- GET-INPUT-CHECKPOINTS returns a list in which the last character of
;; every symbol is an X. The distinguishes primary input checkpoints from
;; other checkpoints in the system. LAST-CHAR-EQ-X? is used to determine
;; whether a given symbol has a last character of X.

-- For the given list, (AX CX) would be returned.

(define (get-input-checkpoints checkpoints)

(cond ((null? checkpoints)
10)

(else
(if (last-char-eq-x? (car checkpoints))

(cons (car checkpoints)
(get-input-checkpoints (cdr checkpoints)))

(get-input-checkpoints (cdr checkpoints))))))

;; (LAST-CHAR-EQ-X? symbol)
9p

;; Parameter:

symbol - an arbitrary symbol

-- LAST-CHAR-EQ-X? decomposes the symbol. GET-LAST-ELT is used to
;; get the last element from the list of characters (SYMBOL-L) that

C-35

;; comprise the SYMBOL. If the LAST-CHAR equals X, then *T is returned.

;; Otherwise, '() is returned.

(define (last-char-eq-x? symbol)

(let* ((symbol-I (string->list (symbol->string symbol)))

(last-char (get-last-elt symbol-i)))

(equal? last-char '(#\X))))

;; (GET-NORMAL-NODES checkpoints fault-classes)

;; Parameters:

;; checkpoints - A list of checkpoints, either of the form (AX BX)

or (CO Ci).
;; fault-classes - A list of lists in which each top level sublist

represents a set of faults that may have occurred
in the circuit.

-- GET-NORMAL-NODES takes a node from the lists of checkpoints and
;; tests to see whether it is normal by calling NORMAL-NODE?.

-- If the given checkpoint is normal, it is added to the list that is
;; returned. Otherwise, it is not.

(define (get-normal-nodes checkpoints fault-classes)

(cond ((null? checkpoints)

0)
((normal-node? (car checkpoints) fault-classes)

(cons (car checkpoints)
(get-normal-nodes (cdr checkpoints) fault-classes)))

(else
(get-normal-nodes (cdr checkpoints) fault-classes))))

;; (NORMAL-NODE? checkpoint fault-classes)

;; Parameters:
;; checkpoint - a single checkpoint symbol
;; fault-classes - A list of lists in which each top level sublist

represents a set of faults that may have occurred

in the circuit.

-- NORMAL-NODE? takes a checkpoint symbol of the form AX or BO and

;; creates the symbols AXO and AXI, or BOO and BO, respectively.
-- Then MEMBER-ALL-LISTS? is called to see if the complemented form of

C-36

;; each of these variables is in every one of the sublists.
-- If both complemented forms are in every sublist, then and only then

;; is that node normal.

(define (normal-node? checkpoint fault-classes)

(let* ((checkpoint-I (string->list (symbol->string checkpoint)))
(checkpoint-O (append checkpoint-I

(string->list (number->string 0 '(int)))))
(checkpoint-i (append checkpoint-i

(string->list (number->string 1 '(int)))))
(symbol-0 (string->symbol (list->string checkpoint-0)))
(symbol-i (string->symbol (list->string checkpoint-i))))

(and (member-all-lists? (list symbol-O) fault-classes)
(member-all-lists? (list symbol-i) fault-classes))))

;; (REMOVE-NORMAL-NODES normal-nodes fault-classes)

;; Parameters:

;; normal-nodes - A list produced by GET-NORMAL-NODES of the form
(AX BX) or (CO Cl).

:; fault-classes - A list of lists in which each top level sublist
represents a set of faults that may have occurred
in the circuit.

- REMOVE-NORMAL-NODES removes the NORMAL-NODES from the FAULT-CLASSES

;; to produce a new list of fault classes with all of the NORMAL-NODES
;; removed.

-- REMOVE-NORMAL-NODES-i is called to modify the list of FAULT-CLASSES
;; for a single node. REMOVE-NORMAL-NODES calls itself recursively

;;until all NORMAL-NODES have been removed from the list of FAULT-CLASSES.

(define (remove-normal-nodes normal-nodes fault-classes)

(if (null? normal-nodes)

fault-classes
(remove-normal-nodes (cdr normal-nodes)

(remove-normal-nodes-I (car normal-nodes)

fault-classes))))

;; (REMOVE-NORMAL-NODES-1 node fault-classes)

;; Parameters:

;; node - A node of the form AX or BO.
;; fault-classes - The list of lists representing fault classes.

C-37

mm m mnmmum ini NUN mmj

;;-REMOVE-NORMAL-NODES-1 takes the input NODE and creates the appropriate
;; checkpoint symbols, for AX this would be AXO and AXi, and uses a
;; Boolean DIVIDE to remove these symbols from every term.

(define (remove-normal-nodes-i node fault-classes)

(let* ((node-i (string->list (symbol->string node)))
(node-O (append node-i (string->list (number->string 0 '(int)))))
(node-1 (append node-i (string->list (number->string I '(int)))))

(symbol-0 (list (string->symbol (list->string node-O))))

(symbol-1 (list (string->symbol (list->string node-i)))))

(divide (divide fault-classes symbol-0) symbol-i)))

;; (GET-COMMON-NODES 1st)

;; Parameters:
;; 1st - A list of lists representing different fault classes.

-- GET-COMMON-NODES returns a list of those items common to all
;; of the top-level sublists. If there is only one top-level sublist,
;; then it is returned. If there are more than one, then
;; GET-COMMON-NODES-1 is called and passed both the FIRST-LST as well as

the REST of the sublists.

(define (get-common-nodes 1st)

(let ((first-lst (car 1st))
(rest (cdr 1st)))

(if (null? rest)

first-lst
(get-common-nodes-I first-lst rest))))

;; (GET-COMMON-NODES-i first-lst list-of-lists)

;; Parameters:

;; first-lst - One of the fault cases.
;; list-of-lists - All of the remaining fault cases.

-- GET-COMMON-NODES-i works by taking each element of the FIRST-LST

;; and checks to see if an element is the MEMBER-ALL-LISTS? of each
;; of the other lists of faults. If it is, then that element is
;; common to all of the fault cases.

;; --If an element is not a MEMBER-ALL-LISTS?, then it is not common to

C-38

;; all of the fault cases. Only those elements that are common to all

;; of the fault cases are returned.
;;--GET-COMMON-NODES-i calls itself recursively until all of the elements
;; of FIRST-LST in the initial call to GET-COMMON-NODES-i have been
;; checked with respect to the other lists.

(define (get-common-nodes-I first-lst list-of-lists)

(if (null? first-lst)

(let* ((first-elt (car first-lst))

(rest (cdr first-lst)))
(if (member-all-lists? first-elt list-of-lists)

(cons first-elt
(get-common-nodes-1 rest list-of-lists))

(get-common-nodes-i rest list-of-lists)))))

;; (MEMBER-ALL-LISTS? elt list-of-lists)

;; Parameters:
;; elt - an arbitrary element
;; list-of-lists - an arbitrary list of lists

- MEMBER-ALL-LISTS? works by determining whether the element is a
;; member of the first list in the LIST-OF-LISTS. If it is, then
;; MEMBER-ALL-LISTS? calls itself recursively. If it calls itself
;; until LIST-OF-LISTS is exhausted, then ELT had to be a member of
;; all of the sublists in LIST-OF-LISTS.

(define (member-all-lists? elt list-of-lists)

(if (null? list-of-lists)
T
(if (member elt (car list-of-lists))

(member-all-lists? elt (cdr list-of-lists))

10)))

;; (REMOVE-COMMON-NODES 1st list-of-lists)

;; Parameters:
;; 1st - A list of elements common to each sublist of LIST-OF-LISTS

that are to be removed from LIST-OF-LISTS.
;; list-of-lists - An arbitrary list of lists.

- REMOVE-COMMON-NODES removes all of the elements of LST from each of
;; the top-level sublists of LIST-OF-LISTS. The first element of LST

C-39

;; is DIVIDEd into LIST-OF-LISTS to form a new list of lists.
-- This new list, with the remaining elements of LST are then passed

;; to a recursive call of REMOVE-COMMON-NODES. This continues until
;; the elements of LST have been exhausted.

(define (remove-common-nodes 1st list-of-lists)

(if (null? 1st)
list-of-lists

(remove-common-nodes (cdr 1st) (divide list-of-lists (car 1st)))))

;; (REMOVE-LAST-CHAR-FROM-NODE-SYMBOLS 1st)

;; Parameters:
;; lt - a list of the form:

((EQ E-- (NOT (* AX- BO-)))

(EQ F-- (NOT Bi-))
(EQ Z-- (NOT (* E-- F--))))

-- REMOVE-LAST-CHAR-FROM-NODE-SYMBOLS takes the LST and removes the last
;; character from each of the node symbols. This leaves a list of the
;; form:

((EQ E- (NOT (* AX BO)))

(EQ F- (NOT BI))
(EQ Z- (NOT (* E- F-))))

-- The LST is decomposed recursively until a symbol is reached. Then if
;; a node symbol is detected, the last character is removed. Otherwise,

the symbol is unchanged. The returned list is the original list

reassembled with the last character removed from each of the node
;; symbols.

(define (remove-last-char-from-node-symbols lst)

(cond ((null? 1st)

'0)
((symbol? lst)
(if (good-symbol? 1st)

(remove-last-char-from-symbol lst)
Ist))

((symbol? (car lst))

(if (good-symbol? (car 1st))
(cons (remove-last-char-from-symbol (car 1st))

(remove-last-char-from-node-symbols (cdr 1st)))

C-40

(cons (car 1st)
(remove-last-char-from-node-symbols (cdr 1st)))))

(else
(cons (remove-last-char-from-node-symbols (car 1st))

(remove-last-char-from-node-symbols (cdr 1st)))))

C-41

Vita

Captain Reginald H. Gilyard

After graduating from Eisenhower H.S. in June 1981 he attended

the U.S. Air Force Academy at Colorado Springs. Upon graduation from the Academy he

was commissioned a Second Lieutenant in the U.S. Air Force and awarded a B.S. degree.

Captain Gilyard went on to complete a tour as an acquisition officer at Norton AFB, CA

prior to attending the Air Force Institute of Technology.

VITA- I

Bibl iraphy

1. Vishwani D. Agrawal and Sharad C. Seth. 6'st (;r(ration For 1LSI (hips. Itl-IL

Computer Society Press, Va-shington. I). C., 1981.

2. Sami A. Al-Arian and Dharma P. Agrawal. Physical failures and fault modlls of creos
circuits. In IEEE Transactions on Circuits and Systems, pages 269 279. 19*7.

3. Archie Blake. Canonical Expressions in Boolean 11g(bra. Phi) thesis. I'niversitv of

Chicago, Chicago, Illinois, 19:17.

4. George Boole. An Investigation of the Laws of Thought. Macmillan, London, 1S.54.

5. Douglas C. Bossen and Se Jung Hong. Cause-effect analysis for multiple fault detec-

tion. In IEEE Transactions on C'omputers pages 1252 1257, 1971.

6. F. NI. Brown. Boolean reasoning with applications in logical design. Unpublished

Textbook 1-89.

7. E. Cerny. Application of a boolean-equation-based methodology to the detection of

faults in combinational switching circuits. Unpublished Report R76-84. IEEE Com-

puter Repository, 1976.

8. Kuang-Wei Chiang and Zvonko G. Vranesic. 'rest generation for MOS complex gate

networks. In Fault Tolerant Computer Symposium Digest of Papers, pages 1.49-157,

1982.

9. Kuang-Wei Chiang and Zvonko G. Vranesic. On fault detection in C.\IOS logic net-

works. In IEEE 20th Design Automation C'onference, pages 50-56, 1983.

10. R. I. Damper and N. Burgess. MOS test pattern generation using path algebras. In

IEEE Transactions on Computers, pages 1123-1128, 1987.

11. Robert J. Feugate and Steven M. McIntyre. Introduction to VLSI Testing. Prentice

Hall, Englewood Cliffs, NJ, 1988.

12. Hideo Fujiwara. Logic Testing and Design for Testability. MIT Press, Cambridge,

Massachusetts, 1985.

13. Jr. H. Troy Nagle et al. An Introduction to Computer Logic. Prentice-Hall, Englewood

Cliffs, 1975.

14. E.V. Huntington. Sets of independent postulates for the algebra of logic. In Transac-

tions of the American Mathematical Society, pages 288-309, 1904.

15. Sunil K. Jain and Vishwani D. Agrawal. Test generation for mos circuits using d-
algorithm. In IEEE 20th Design Automation Conference, pages 64-70, 1983.

16. Barry W. Johnson. Design and A nalysis of Fault-Tolerant Digital Systems. Addison-

Wesley Publishing Company, Reading, Massachusetts, 1989.

17. E.L. Johnson and M.A. Karim. Digital design: A pragmatic approach. PWS Engi-
neering, Boston, 1987.

BIB-I

18. Capt James J. Kainec. A diagnostic system using hoolean reasoning. M..ster's thesis.
AFIT/ENG, Wright-Patterson A YI 0ff, December 1988.

19. Parag K. Lala. Fault Tolerant and Fault Tcstable Hardwvare I~sign. Prentice-liall
International, Inc., London, 1985.

20. Seymour L.ipschutz. Discrete Mathematics. McGraw-Hll, New York. 1J76.

21. M. Morris Mano. Digital Logic and Comnputer Design. Prentice-Hall. Inc.. Englewood
Cliffs N.J., 1979.

22. 0.11. Mitchell. On a new algebra of logic. In C.S. Peirce, edhitor, Studies in Logic.
Little, Brown. Boston. 1883.

2:3. Roger S. Pressman. Softwrare Engineering: .A Practitioner's .4pproarh. NlcGraw-Hill
New York. 1987.

2 1. W.V. Quine. The problem of simplifying truth functions. Anime-ran Mathematical
Monthly, 59:521-531, October 19.52.

25. W.V. Quine. wa to simplify truth functions. Arneriran Mathematical M1onthly,
62:627-631, November 1935.

26. Hlassan K. Reghbati. Tutorial: VLSI Testing and Validation Techniques. IEEE Comn-
puter Society Press. Washington, D. C,, 1985.

27. Scott 11. Robinson and John 1). Shen. Towards a switch level test pattern generation
program. In International Conference on Computer Aided Design, pages :39-4 1, 1985.

28. Sergiu Rudeanu. Hoolran Functions and Fquations. North Holland. Amsterdam.
1974.

29. E.W. Samson and B.E. Mills. Circuit .iiiato:Algebra and Algorithms for New

IBooltan C'anonical Expressions. Air Force Cambiidge Research ('enter. Cambridge.
Massachusetts, 1954.

3 0. D~onald F. Stanat and David F. Mic '.fister. Discrete Mathecmat ics in Computer Sci-
ence. Prentice-flail, Inc., Englewood Cliffs, N.J.. '977.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
ASS FIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT,/GCS/E'NG/SqD-4
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

School of Engineering AFIT/ENG
6c- ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology (AU)
Wright-Patterson AFB, Ohio 45433-6533

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Microelectronics (If applicable)

Division, Design Branch WRDC/FLED

8c- ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Wright-Patterson AFB, OH 45433 ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Security Classification)

Boolean Approaches In Digital Diagnosis (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)
Reginald H. Gilyard, Captain, US Air Force

13a. TYPE OF REPORT 13b, TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNTM1. .'YPE O -RPT FROM TO ,9912o4 24
16. SUPPL. NTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Boolean Algebra
02- 02 Fault Diagnosis

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: DR. FRANK BROWN, PhD
Professor, Department of
Flectrical and Computer Engineering

(see reverse)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
C0 UNCLASSIFIED/UNLIMITED 91 SAME AS RPT C1 DTIC USERS UNCLASSIFTED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Dr. Frank Brown, PhD AFIT/ENG

DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

AFIT/GCS/ENG/89D-4

Abstract

The goal of this thesis is to review and improve two existing methods that use Boolean

reasoning as a basis for testing digital circuits. Extensions are made to research done by

both Cerny and Kainec in this area.

The method developed by Cerny to generate test vectors capable of detecting single

stuck-at, bridge and multiple stuck-at faults is reviewed and then extended in two ways.

The first extension incorporates the capability to automatically analyze the results gained

from applying a given vector. The second extension allows the diagnosis of sequential

circuits. Since Cerny's original method was not automated the entire process is updated

to include the extensions and then programmed.

Kainec developed an automated diagnostic system to test for multiple faults in com-

binational circuits. The original system is restricted to diagnosing faults in circuits with

one output. An extension is designed and programmed to incorporate the capability to

diagnose multiple output circuits. The extension shows that multiple output circuits offer

the added advantage of being able to choose an optimal test vector from a set of genrated

vectors, thereby shortening the required testing time for a given circuit.

The software routines are programmed in PC-Scheme (a dialect of LISP) on an IBM

microcomputer. Due to a conversion program written by Kainec the software can also be

run on a Sun-4 workstation in the T environment. T is derived from Scheme.

